Move ./modules to ./src

This commit is contained in:
Vinnie Falco
2013-09-11 11:17:22 -07:00
parent 6d828ae476
commit 45eccf2ccf
386 changed files with 1673 additions and 1674 deletions

View File

@@ -0,0 +1,188 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
char const* Base58::s_currentAlphabet = Base58::getRippleAlphabet ();
char const* Base58::getCurrentAlphabet ()
{
return s_currentAlphabet;
}
void Base58::setCurrentAlphabet (char const* alphabet)
{
s_currentAlphabet = alphabet;
}
char const* Base58::getBitcoinAlphabet ()
{
return "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
}
char const* Base58::getRippleAlphabet ()
{
return "rpshnaf39wBUDNEGHJKLM4PQRST7VWXYZ2bcdeCg65jkm8oFqi1tuvAxyz";
}
char const* Base58::getTestnetAlphabet ()
{
return "RPShNAF39wBUDnEGHJKLM4pQrsT7VWXYZ2bcdeCg65jkm8ofqi1tuvaxyz";
}
std::string Base58::encode (const unsigned char* pbegin, const unsigned char* pend)
{
char const* alphabet = getCurrentAlphabet ();
CAutoBN_CTX pctx;
CBigNum bn58 = 58;
CBigNum bn0 = 0;
// Convert big endian data to little endian
// Extra zero at the end make sure bignum will interpret as a positive number
Blob vchTmp (pend - pbegin + 1, 0);
std::reverse_copy (pbegin, pend, vchTmp.begin ());
// Convert little endian data to bignum
CBigNum bn (vchTmp);
// Convert bignum to std::string
std::string str;
// Expected size increase from base58 conversion is approximately 137%
// use 138% to be safe
str.reserve ((pend - pbegin) * 138 / 100 + 1);
CBigNum dv;
CBigNum rem;
while (bn > bn0)
{
if (!BN_div (&dv, &rem, &bn, &bn58, pctx))
throw bignum_error ("EncodeBase58 : BN_div failed");
bn = dv;
unsigned int c = rem.getuint ();
str += alphabet [c];
}
// Leading zeroes encoded as base58 zeros
for (const unsigned char* p = pbegin; p < pend && *p == 0; p++)
str += alphabet [0];
// Convert little endian std::string to big endian
reverse (str.begin (), str.end ());
return str;
}
std::string Base58::encode (Blob const& vch)
{
return encode (&vch[0], &vch[0] + vch.size ());
}
std::string Base58::encodeWithCheck (Blob const& vchIn)
{
// add 4-byte hash check to the end
Blob vch (vchIn);
uint256 hash = SHA256Hash (vch.begin (), vch.end ());
vch.insert (vch.end (), (unsigned char*)&hash, (unsigned char*)&hash + 4);
return encode (vch);
}
bool Base58::decode (const char* psz, Blob& vchRet, const char* pAlpha)
{
assert (pAlpha != 0);
CAutoBN_CTX pctx;
vchRet.clear ();
CBigNum bn58 = 58;
CBigNum bn = 0;
CBigNum bnChar;
while (isspace (*psz))
psz++;
// Convert big endian string to bignum
for (const char* p = psz; *p; p++)
{
const char* p1 = strchr (pAlpha, *p);
if (p1 == NULL)
{
while (isspace (*p))
p++;
if (*p != '\0')
return false;
break;
}
bnChar.setuint (p1 - pAlpha);
if (!BN_mul (&bn, &bn, &bn58, pctx))
throw bignum_error ("DecodeBase58 : BN_mul failed");
bn += bnChar;
}
// Get bignum as little endian data
Blob vchTmp = bn.getvch ();
// Trim off sign byte if present
if (vchTmp.size () >= 2 && vchTmp.end ()[-1] == 0 && vchTmp.end ()[-2] >= 0x80)
vchTmp.erase (vchTmp.end () - 1);
// Restore leading zeros
int nLeadingZeros = 0;
for (const char* p = psz; *p == pAlpha[0]; p++)
nLeadingZeros++;
vchRet.assign (nLeadingZeros + vchTmp.size (), 0);
// Convert little endian data to big endian
std::reverse_copy (vchTmp.begin (), vchTmp.end (), vchRet.end () - vchTmp.size ());
return true;
}
bool Base58::decode (const std::string& str, Blob& vchRet)
{
return decode (str.c_str (), vchRet);
}
bool Base58::decodeWithCheck (const char* psz, Blob& vchRet, const char* pAlphabet)
{
assert (pAlphabet != NULL);
if (!decode (psz, vchRet, pAlphabet))
return false;
if (vchRet.size () < 4)
{
vchRet.clear ();
return false;
}
uint256 hash = SHA256Hash (vchRet.begin (), vchRet.end () - 4);
if (memcmp (&hash, &vchRet.end ()[-4], 4) != 0)
{
vchRet.clear ();
return false;
}
vchRet.resize (vchRet.size () - 4);
return true;
}
bool Base58::decodeWithCheck (const std::string& str, Blob& vchRet, const char* pAlphabet)
{
return decodeWithCheck (str.c_str (), vchRet, pAlphabet);
}
// vim:ts=4

View File

@@ -0,0 +1,49 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
//
// Why base-58 instead of standard base-64 encoding?
// - Don't want 0OIl characters that look the same in some fonts and
// could be used to create visually identical looking account numbers.
// - A string with non-alphanumeric characters is not as easily accepted as an account number.
// - E-mail usually won't line-break if there's no punctuation to break at.
// - Doubleclicking selects the whole number as one word if it's all alphanumeric.
//
#ifndef RIPPLE_BASE58_H
#define RIPPLE_BASE58_H
/** Performs Base 58 encoding and decoding.
*/
class Base58
{
public:
// VFALCO TODO clean up this poor API
static char const* getCurrentAlphabet ();
static void setCurrentAlphabet (char const* alphabet);
static char const* getBitcoinAlphabet ();
static char const* getRippleAlphabet ();
static char const* getTestnetAlphabet ();
static std::string encode (const unsigned char* pbegin, const unsigned char* pend);
static std::string encode (Blob const& vch);
static std::string encodeWithCheck (Blob const& vchIn);
static bool decode (const char* psz, Blob& vchRet, const char* pAlphabet = getCurrentAlphabet ());
static bool decode (const std::string& str, Blob& vchRet);
static bool decodeWithCheck (const char* psz, Blob& vchRet, const char* pAlphabet = getCurrentAlphabet ());
static bool decodeWithCheck (const std::string& str, Blob& vchRet, const char* pAlphabet);
private:
static char const* s_currentAlphabet;
};
#endif
// vim:ts=4

View File

@@ -0,0 +1,135 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
//
// Why base-58 instead of standard base-64 encoding?
// - Don't want 0OIl characters that look the same in some fonts and
// could be used to create visually identical looking account numbers.
// - A string with non-alphanumeric characters is not as easily accepted as an account number.
// - E-mail usually won't line-break if there's no punctuation to break at.
// - Doubleclicking selects the whole number as one word if it's all alphanumeric.
//
CBase58Data::CBase58Data ()
: nVersion (1)
{
}
CBase58Data::~CBase58Data ()
{
if (!vchData.empty ())
memset (&vchData[0], 0, vchData.size ());
}
void CBase58Data::SetData (int nVersionIn, Blob const& vchDataIn)
{
nVersion = nVersionIn;
vchData = vchDataIn;
}
void CBase58Data::SetData (int nVersionIn, const void* pdata, size_t nSize)
{
nVersion = nVersionIn;
vchData.resize (nSize);
if (nSize)
memcpy (&vchData[0], pdata, nSize);
}
void CBase58Data::SetData (int nVersionIn, const unsigned char* pbegin, const unsigned char* pend)
{
SetData (nVersionIn, (void*)pbegin, pend - pbegin);
}
bool CBase58Data::SetString (const char* psz, unsigned char version, const char* pAlphabet)
{
Blob vchTemp;
Base58::decodeWithCheck (psz, vchTemp, pAlphabet);
if (vchTemp.empty () || vchTemp[0] != version)
{
vchData.clear ();
nVersion = 1;
return false;
}
nVersion = vchTemp[0];
vchData.resize (vchTemp.size () - 1);
if (!vchData.empty ())
memcpy (&vchData[0], &vchTemp[1], vchData.size ());
memset (&vchTemp[0], 0, vchTemp.size ());
return true;
}
bool CBase58Data::SetString (const std::string& str, unsigned char version)
{
return SetString (str.c_str (), version);
}
std::string CBase58Data::ToString () const
{
Blob vch (1, nVersion);
vch.insert (vch.end (), vchData.begin (), vchData.end ());
return Base58::encodeWithCheck (vch);
}
int CBase58Data::CompareTo (const CBase58Data& b58) const
{
if (nVersion < b58.nVersion) return -1;
if (nVersion > b58.nVersion) return 1;
if (vchData < b58.vchData) return -1;
if (vchData > b58.vchData) return 1;
return 0;
}
bool CBase58Data::operator== (const CBase58Data& b58) const
{
return CompareTo (b58) == 0;
}
bool CBase58Data::operator!= (const CBase58Data& b58) const
{
return CompareTo (b58) != 0;
}
bool CBase58Data::operator<= (const CBase58Data& b58) const
{
return CompareTo (b58) <= 0;
}
bool CBase58Data::operator>= (const CBase58Data& b58) const
{
return CompareTo (b58) >= 0;
}
bool CBase58Data::operator< (const CBase58Data& b58) const
{
return CompareTo (b58) < 0;
}
bool CBase58Data::operator> (const CBase58Data& b58) const
{
return CompareTo (b58) > 0;
}
std::size_t hash_value (const CBase58Data& b58)
{
std::size_t seed = HashMaps::getInstance ().getNonce <size_t> ()
+ (b58.nVersion * HashMaps::goldenRatio);
boost::hash_combine (seed, b58.vchData);
return seed;
}
// vim:ts=4

View File

@@ -0,0 +1,55 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
//
// Why base-58 instead of standard base-64 encoding?
// - Don't want 0OIl characters that look the same in some fonts and
// could be used to create visually identical looking account numbers.
// - A string with non-alphanumeric characters is not as easily accepted as an account number.
// - E-mail usually won't line-break if there's no punctuation to break at.
// - Doubleclicking selects the whole number as one word if it's all alphanumeric.
//
#ifndef RIPPLE_BASE58DATA_H
#define RIPPLE_BASE58DATA_H
class CBase58Data
{
protected:
unsigned char nVersion;
Blob vchData;
CBase58Data ();
~CBase58Data ();
void SetData (int nVersionIn, Blob const& vchDataIn);
void SetData (int nVersionIn, const void* pdata, size_t nSize);
void SetData (int nVersionIn, const unsigned char* pbegin, const unsigned char* pend);
public:
bool SetString (const char* psz, unsigned char version, const char* pAlphabet = Base58::getCurrentAlphabet ());
bool SetString (const std::string& str, unsigned char version);
std::string ToString () const;
int CompareTo (const CBase58Data& b58) const;
bool operator== (const CBase58Data& b58) const;
bool operator!= (const CBase58Data& b58) const;
bool operator<= (const CBase58Data& b58) const;
bool operator>= (const CBase58Data& b58) const;
bool operator< (const CBase58Data& b58) const;
bool operator> (const CBase58Data& b58) const;
friend std::size_t hash_value (const CBase58Data& b58);
};
extern std::size_t hash_value (const CBase58Data& b58);
#endif
// vim:ts=4

View File

@@ -0,0 +1,643 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
CBigNum::CBigNum ()
{
BN_init (this);
}
CBigNum::CBigNum (const CBigNum& b)
{
BN_init (this);
if (!BN_copy (this, &b))
{
BN_clear_free (this);
throw bignum_error ("CBigNum::CBigNum(const CBigNum&) : BN_copy failed");
}
}
CBigNum& CBigNum::operator= (const CBigNum& b)
{
if (!BN_copy (this, &b))
throw bignum_error ("CBigNum::operator= : BN_copy failed");
return (*this);
}
CBigNum::~CBigNum ()
{
BN_clear_free (this);
}
CBigNum::CBigNum (char n)
{
BN_init (this);
if (n >= 0) setulong (n);
else setint64 (n);
}
CBigNum::CBigNum (short n)
{
BN_init (this);
if (n >= 0) setulong (n);
else setint64 (n);
}
CBigNum::CBigNum (int n)
{
BN_init (this);
if (n >= 0) setulong (n);
else setint64 (n);
}
CBigNum::CBigNum (long n)
{
BN_init (this);
if (n >= 0) setulong (n);
else setint64 (n);
}
CBigNum::CBigNum (int64 n)
{
BN_init (this);
setint64 (n);
}
CBigNum::CBigNum (unsigned char n)
{
BN_init (this);
setulong (n);
}
CBigNum::CBigNum (unsigned short n)
{
BN_init (this);
setulong (n);
}
CBigNum::CBigNum (unsigned int n)
{
BN_init (this);
setulong (n);
}
CBigNum::CBigNum (uint64 n)
{
BN_init (this);
setuint64 (n);
}
CBigNum::CBigNum (uint256 n)
{
BN_init (this);
setuint256 (n);
}
CBigNum::CBigNum (Blob const& vch)
{
BN_init (this);
setvch (vch);
}
void CBigNum::setuint (unsigned int n)
{
setulong (static_cast<unsigned long> (n));
}
unsigned int CBigNum::getuint () const
{
return BN_get_word (this);
}
int CBigNum::getint () const
{
unsigned long n = BN_get_word (this);
if (!BN_is_negative (this))
return (n > INT_MAX ? INT_MAX : n);
else
return (n > INT_MAX ? INT_MIN : - (int)n);
}
void CBigNum::setint64 (int64 n)
{
unsigned char pch[sizeof (n) + 6];
unsigned char* p = pch + 4;
bool fNegative = false;
if (n < (int64)0)
{
n = -n;
fNegative = true;
}
bool fLeadingZeroes = true;
for (int i = 0; i < 8; i++)
{
unsigned char c = (n >> 56) & 0xff;
n <<= 8;
if (fLeadingZeroes)
{
if (c == 0)
continue;
if (c & 0x80)
*p++ = (fNegative ? 0x80 : 0);
else if (fNegative)
c |= 0x80;
fLeadingZeroes = false;
}
*p++ = c;
}
unsigned int nSize = p - (pch + 4);
pch[0] = (nSize >> 24) & 0xff;
pch[1] = (nSize >> 16) & 0xff;
pch[2] = (nSize >> 8) & 0xff;
pch[3] = (nSize) & 0xff;
BN_mpi2bn (pch, p - pch, this);
}
uint64 CBigNum::getuint64 () const
{
#if (ULONG_MAX > UINT_MAX)
return static_cast<uint64> (getulong ());
#else
int len = BN_num_bytes (this);
if (len > 8)
throw std::runtime_error ("BN getuint64 overflow");
unsigned char buf[8];
memset (buf, 0, sizeof (buf));
BN_bn2bin (this, buf + 8 - len);
return
static_cast<uint64> (buf[0]) << 56 | static_cast<uint64> (buf[1]) << 48 |
static_cast<uint64> (buf[2]) << 40 | static_cast<uint64> (buf[3]) << 32 |
static_cast<uint64> (buf[4]) << 24 | static_cast<uint64> (buf[5]) << 16 |
static_cast<uint64> (buf[6]) << 8 | static_cast<uint64> (buf[7]);
#endif
}
void CBigNum::setuint64 (uint64 n)
{
#if (ULONG_MAX > UINT_MAX)
setulong (static_cast<unsigned long> (n));
#else
unsigned char buf[8];
buf[0] = static_cast<unsigned char> ((n >> 56) & 0xff);
buf[1] = static_cast<unsigned char> ((n >> 48) & 0xff);
buf[2] = static_cast<unsigned char> ((n >> 40) & 0xff);
buf[3] = static_cast<unsigned char> ((n >> 32) & 0xff);
buf[4] = static_cast<unsigned char> ((n >> 24) & 0xff);
buf[5] = static_cast<unsigned char> ((n >> 16) & 0xff);
buf[6] = static_cast<unsigned char> ((n >> 8) & 0xff);
buf[7] = static_cast<unsigned char> ((n) & 0xff);
BN_bin2bn (buf, 8, this);
#endif
}
void CBigNum::setuint256 (uint256 const& n)
{
BN_bin2bn (n.begin (), n.size (), NULL);
}
uint256 CBigNum::getuint256 ()
{
uint256 ret;
unsigned int size = BN_num_bytes (this);
if (size > ret.size ())
return ret;
BN_bn2bin (this, ret.begin () + (ret.size () - BN_num_bytes (this)));
return ret;
}
void CBigNum::setvch (Blob const& vch)
{
Blob vch2 (vch.size () + 4);
unsigned int nSize = vch.size ();
// BIGNUM's byte stream format expects 4 bytes of
// big endian size data info at the front
vch2[0] = (nSize >> 24) & 0xff;
vch2[1] = (nSize >> 16) & 0xff;
vch2[2] = (nSize >> 8) & 0xff;
vch2[3] = (nSize >> 0) & 0xff;
// swap data to big endian
std::reverse_copy (vch.begin (), vch.end (), vch2.begin () + 4);
BN_mpi2bn (&vch2[0], vch2.size (), this);
}
Blob CBigNum::getvch () const
{
unsigned int nSize = BN_bn2mpi (this, NULL);
if (nSize < 4)
return Blob ();
Blob vch (nSize);
BN_bn2mpi (this, &vch[0]);
vch.erase (vch.begin (), vch.begin () + 4);
reverse (vch.begin (), vch.end ());
return vch;
}
CBigNum& CBigNum::SetCompact (unsigned int nCompact)
{
unsigned int nSize = nCompact >> 24;
Blob vch (4 + nSize);
vch[3] = nSize;
if (nSize >= 1) vch[4] = (nCompact >> 16) & 0xff;
if (nSize >= 2) vch[5] = (nCompact >> 8) & 0xff;
if (nSize >= 3) vch[6] = (nCompact >> 0) & 0xff;
BN_mpi2bn (&vch[0], vch.size (), this);
return *this;
}
unsigned int CBigNum::GetCompact () const
{
unsigned int nSize = BN_bn2mpi (this, NULL);
Blob vch (nSize);
nSize -= 4;
BN_bn2mpi (this, &vch[0]);
unsigned int nCompact = nSize << 24;
if (nSize >= 1) nCompact |= (vch[4] << 16);
if (nSize >= 2) nCompact |= (vch[5] << 8);
if (nSize >= 3) nCompact |= (vch[6] << 0);
return nCompact;
}
void CBigNum::SetHex (const std::string& str)
{
// skip 0x
const char* psz = str.c_str ();
while (isspace (*psz))
psz++;
bool fNegative = false;
if (*psz == '-')
{
fNegative = true;
psz++;
}
if (psz[0] == '0' && tolower (psz[1]) == 'x')
psz += 2;
while (isspace (*psz))
psz++;
// hex string to bignum
static char phexdigit[256] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0,
0, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
*this = 0;
while (isxdigit (*psz))
{
*this <<= 4;
int n = phexdigit[ (int) * psz++];
*this += n;
}
if (fNegative)
*this = 0 - *this;
}
std::string CBigNum::ToString (int nBase) const
{
CAutoBN_CTX pctx;
CBigNum bnBase = nBase;
CBigNum bn0 = 0;
std::string str;
CBigNum bn = *this;
BN_set_negative (&bn, false);
CBigNum dv;
CBigNum rem;
if (BN_cmp (&bn, &bn0) == 0)
return "0";
while (BN_cmp (&bn, &bn0) > 0)
{
if (!BN_div (&dv, &rem, &bn, &bnBase, pctx))
throw bignum_error ("CBigNum::ToString() : BN_div failed");
bn = dv;
unsigned int c = rem.getuint ();
str += "0123456789abcdef"[c];
}
if (BN_is_negative (this))
str += "-";
reverse (str.begin (), str.end ());
return str;
}
std::string CBigNum::GetHex () const
{
return ToString (16);
}
bool CBigNum::operator! () const
{
return BN_is_zero (this);
}
CBigNum& CBigNum::operator+= (const CBigNum& b)
{
if (!BN_add (this, this, &b))
throw bignum_error ("CBigNum::operator+= : BN_add failed");
return *this;
}
CBigNum& CBigNum::operator-= (const CBigNum& b)
{
*this = *this - b;
return *this;
}
CBigNum& CBigNum::operator*= (const CBigNum& b)
{
CAutoBN_CTX pctx;
if (!BN_mul (this, this, &b, pctx))
throw bignum_error ("CBigNum::operator*= : BN_mul failed");
return *this;
}
CBigNum& CBigNum::operator/= (const CBigNum& b)
{
*this = *this / b;
return *this;
}
CBigNum& CBigNum::operator%= (const CBigNum& b)
{
*this = *this % b;
return *this;
}
CBigNum& CBigNum::operator<<= (unsigned int shift)
{
if (!BN_lshift (this, this, shift))
throw bignum_error ("CBigNum:operator<<= : BN_lshift failed");
return *this;
}
CBigNum& CBigNum::operator>>= (unsigned int shift)
{
// Note: BN_rshift segfaults on 64-bit if 2^shift is greater than the number
// if built on ubuntu 9.04 or 9.10, probably depends on version of openssl
CBigNum a = 1;
a <<= shift;
if (BN_cmp (&a, this) > 0)
{
*this = 0;
return *this;
}
if (!BN_rshift (this, this, shift))
throw bignum_error ("CBigNum:operator>>= : BN_rshift failed");
return *this;
}
CBigNum& CBigNum::operator++ ()
{
// prefix operator
if (!BN_add (this, this, BN_value_one ()))
throw bignum_error ("CBigNum::operator++ : BN_add failed");
return *this;
}
const CBigNum CBigNum::operator++ (int)
{
// postfix operator
const CBigNum ret = *this;
++ (*this);
return ret;
}
CBigNum& CBigNum::operator-- ()
{
// prefix operator
CBigNum r;
if (!BN_sub (&r, this, BN_value_one ()))
throw bignum_error ("CBigNum::operator-- : BN_sub failed");
*this = r;
return *this;
}
const CBigNum CBigNum::operator-- (int)
{
// postfix operator
const CBigNum ret = *this;
-- (*this);
return ret;
}
void CBigNum::setulong (unsigned long n)
{
if (!BN_set_word (this, n))
throw bignum_error ("CBigNum conversion from unsigned long : BN_set_word failed");
}
unsigned long CBigNum::getulong () const
{
return BN_get_word (this);
}
const CBigNum operator+ (const CBigNum& a, const CBigNum& b)
{
CBigNum r;
if (!BN_add (&r, &a, &b))
throw bignum_error ("CBigNum::operator+ : BN_add failed");
return r;
}
const CBigNum operator- (const CBigNum& a, const CBigNum& b)
{
CBigNum r;
if (!BN_sub (&r, &a, &b))
throw bignum_error ("CBigNum::operator- : BN_sub failed");
return r;
}
const CBigNum operator- (const CBigNum& a)
{
CBigNum r (a);
BN_set_negative (&r, !BN_is_negative (&r));
return r;
}
const CBigNum operator* (const CBigNum& a, const CBigNum& b)
{
CAutoBN_CTX pctx;
CBigNum r;
if (!BN_mul (&r, &a, &b, pctx))
throw bignum_error ("CBigNum::operator* : BN_mul failed");
return r;
}
const CBigNum operator/ (const CBigNum& a, const CBigNum& b)
{
CAutoBN_CTX pctx;
CBigNum r;
if (!BN_div (&r, NULL, &a, &b, pctx))
throw bignum_error ("CBigNum::operator/ : BN_div failed");
return r;
}
const CBigNum operator% (const CBigNum& a, const CBigNum& b)
{
CAutoBN_CTX pctx;
CBigNum r;
if (!BN_mod (&r, &a, &b, pctx))
throw bignum_error ("CBigNum::operator% : BN_div failed");
return r;
}
const CBigNum operator<< (const CBigNum& a, unsigned int shift)
{
CBigNum r;
if (!BN_lshift (&r, &a, shift))
throw bignum_error ("CBigNum:operator<< : BN_lshift failed");
return r;
}
const CBigNum operator>> (const CBigNum& a, unsigned int shift)
{
CBigNum r = a;
r >>= shift;
return r;
}
bool operator== (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) == 0);
}
bool operator!= (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) != 0);
}
bool operator<= (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) <= 0);
}
bool operator>= (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) >= 0);
}
bool operator< (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) < 0);
}
bool operator> (const CBigNum& a, const CBigNum& b)
{
return (BN_cmp (&a, &b) > 0);
}
#if (ULONG_MAX > UINT_MAX)
int BN_add_word64 (BIGNUM* bn, uint64 word)
{
return BN_add_word (bn, word);
}
int BN_sub_word64 (BIGNUM* bn, uint64 word)
{
return BN_sub_word (bn, word);
}
int BN_mul_word64 (BIGNUM* bn, uint64 word)
{
return BN_mul_word (bn, word);
}
uint64 BN_div_word64 (BIGNUM* bn, uint64 word)
{
return BN_div_word (bn, word);
}
#else
int BN_add_word64 (BIGNUM* a, uint64 w)
{
CBigNum bn (w);
return BN_add (a, &bn, a);
}
int BN_sub_word64 (BIGNUM* a, uint64 w)
{
CBigNum bn (w);
return BN_sub (a, &bn, a);
}
int BN_mul_word64 (BIGNUM* a, uint64 w)
{
CBigNum bn (w);
CAutoBN_CTX ctx;
return BN_mul (a, &bn, a, ctx);
}
uint64 BN_div_word64 (BIGNUM* a, uint64 w)
{
CBigNum bn (w);
CAutoBN_CTX ctx;
return (BN_div (a, NULL, a, &bn, ctx) == 1) ? 0 : ((uint64) - 1);
}
#endif

View File

@@ -0,0 +1,171 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#ifndef RIPPLE_CBIGNUM_H
#define RIPPLE_CBIGNUM_H
//------------------------------------------------------------------------------
class bignum_error : public std::runtime_error
{
public:
explicit bignum_error (const std::string& str) : std::runtime_error (str) {}
};
//------------------------------------------------------------------------------
class CAutoBN_CTX
{
private:
CAutoBN_CTX (const CAutoBN_CTX&); // no implementation
CAutoBN_CTX& operator= (const CAutoBN_CTX&); // no implementation
protected:
BN_CTX* pctx;
CAutoBN_CTX& operator= (BN_CTX* pnew)
{
pctx = pnew;
return *this;
}
public:
CAutoBN_CTX ()
{
pctx = BN_CTX_new ();
if (pctx == NULL)
throw bignum_error ("CAutoBN_CTX : BN_CTX_new() returned NULL");
}
~CAutoBN_CTX ()
{
if (pctx != NULL)
BN_CTX_free (pctx);
}
operator BN_CTX* ()
{
return pctx;
}
BN_CTX& operator* ()
{
return *pctx;
}
BN_CTX** operator& ()
{
return &pctx;
}
bool operator! ()
{
return (pctx == NULL);
}
};
//------------------------------------------------------------------------------
// VFALCO TODO figure out a way to remove the dependency on openssl in the
// header. Maybe rewrite this to use cryptopp.
class CBigNum : public BIGNUM
{
public:
CBigNum ();
CBigNum (const CBigNum& b);
CBigNum& operator= (const CBigNum& b);
CBigNum (char n);
CBigNum (short n);
CBigNum (int n);
CBigNum (long n);
CBigNum (int64 n);
CBigNum (unsigned char n);
CBigNum (unsigned short n);
CBigNum (unsigned int n);
CBigNum (uint64 n);
explicit CBigNum (uint256 n);
explicit CBigNum (Blob const& vch);
~CBigNum ();
void setuint (unsigned int n);
unsigned int getuint () const;
int getint () const;
void setint64 (int64 n);
uint64 getuint64 () const;
void setuint64 (uint64 n);
void setuint256 (uint256 const& n);
uint256 getuint256 ();
void setvch (Blob const& vch);
Blob getvch () const;
CBigNum& SetCompact (unsigned int nCompact);
unsigned int GetCompact () const;
void SetHex (const std::string& str);
std::string ToString (int nBase = 10) const;
std::string GetHex () const;
bool operator! () const;
CBigNum& operator+= (const CBigNum& b);
CBigNum& operator-= (const CBigNum& b);
CBigNum& operator*= (const CBigNum& b);
CBigNum& operator/= (const CBigNum& b);
CBigNum& operator%= (const CBigNum& b);
CBigNum& operator<<= (unsigned int shift);
CBigNum& operator>>= (unsigned int shift);
CBigNum& operator++ ();
CBigNum& operator-- ();
const CBigNum operator++ (int);
const CBigNum operator-- (int);
friend inline const CBigNum operator- (const CBigNum& a, const CBigNum& b);
friend inline const CBigNum operator/ (const CBigNum& a, const CBigNum& b);
friend inline const CBigNum operator% (const CBigNum& a, const CBigNum& b);
private:
// private because the size of an unsigned long varies by platform
void setulong (unsigned long n);
unsigned long getulong () const;
};
const CBigNum operator+ (const CBigNum& a, const CBigNum& b);
const CBigNum operator- (const CBigNum& a, const CBigNum& b);
const CBigNum operator- (const CBigNum& a);
const CBigNum operator* (const CBigNum& a, const CBigNum& b);
const CBigNum operator/ (const CBigNum& a, const CBigNum& b);
const CBigNum operator% (const CBigNum& a, const CBigNum& b);
const CBigNum operator<< (const CBigNum& a, unsigned int shift);
const CBigNum operator>> (const CBigNum& a, unsigned int shift);
bool operator== (const CBigNum& a, const CBigNum& b);
bool operator!= (const CBigNum& a, const CBigNum& b);
bool operator<= (const CBigNum& a, const CBigNum& b);
bool operator>= (const CBigNum& a, const CBigNum& b);
bool operator< (const CBigNum& a, const CBigNum& b);
bool operator> (const CBigNum& a, const CBigNum& b);
//------------------------------------------------------------------------------
// VFALCO NOTE this seems as good a place as any for this.
// Here's the old implementation using macros, in case something broke
//#if (ULONG_MAX > UINT_MAX)
//#define BN_add_word64(bn, word) BN_add_word(bn, word)
//#define BN_sub_word64(bn, word) BN_sub_word(bn, word)
//#define BN_mul_word64(bn, word) BN_mul_word(bn, word)
//#define BN_div_word64(bn, word) BN_div_word(bn, word)
//#endif
// VFALCO I believe only STAmount uses these
extern int BN_add_word64 (BIGNUM* a, uint64 w);
extern int BN_sub_word64 (BIGNUM* a, uint64 w);
extern int BN_mul_word64 (BIGNUM* a, uint64 w);
extern uint64 BN_div_word64 (BIGNUM* a, uint64 w);
#endif
// vim:ts=4

View File

@@ -0,0 +1,52 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
// VFALCO TODO move inlined stuff from CKey into here
class CKeyTests : public UnitTest
{
public:
CKeyTests () : UnitTest ("CKey", "ripple")
{
}
void runTest ()
{
beginTestCase ("determinism");
uint128 seed1, seed2;
seed1.SetHex ("71ED064155FFADFA38782C5E0158CB26");
seed2.SetHex ("CF0C3BE4485961858C4198515AE5B965");
CKey root1 (seed1), root2 (seed2);
uint256 priv1, priv2;
root1.GetPrivateKeyU (priv1);
root2.GetPrivateKeyU (priv2);
unexpected (priv1.GetHex () != "7CFBA64F771E93E817E15039215430B53F7401C34931D111EAB3510B22DBB0D8",
"Incorrect private key for generator");
unexpected (priv2.GetHex () != "98BC2EACB26EB021D1A6293C044D88BA2F0B6729A2772DEEBF2E21A263C1740B",
"Incorrect private key for generator");
RippleAddress nSeed;
nSeed.setSeed (seed1);
unexpected (nSeed.humanSeed () != "shHM53KPZ87Gwdqarm1bAmPeXg8Tn",
"Incorrect human seed");
unexpected (nSeed.humanSeed1751 () != "MAD BODY ACE MINT OKAY HUB WHAT DATA SACK FLAT DANA MATH",
"Incorrect 1751 seed");
}
};
static CKeyTests cKeyTests;

View File

@@ -0,0 +1,304 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#ifndef RIPPLE_CKEY_H
#define RIPPLE_CKEY_H
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE = 65; // but we don't use full keys
// const unsigned int COMPUB_KEY_SIZE = 33;
// const unsigned int SIGNATURE_SIZE = 72;
//
// see www.keylength.com
// script supports up to 75 for single byte push
// VFALCO NOTE this is unused
/*
int static inline EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{
int okay = 0;
BN_CTX *ctx = NULL;
EC_POINT *pub_key = NULL;
if (!eckey) return 0;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL)
goto err;
pub_key = EC_POINT_new(group);
if (pub_key == NULL)
goto err;
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
goto err;
EC_KEY_set_conv_form(eckey, POINT_CONVERSION_COMPRESSED);
EC_KEY_set_private_key(eckey, priv_key);
EC_KEY_set_public_key(eckey, pub_key);
okay = 1;
err:
if (pub_key)
EC_POINT_free(pub_key);
if (ctx != NULL)
BN_CTX_free(ctx);
return (okay);
}
*/
class key_error : public std::runtime_error
{
public:
explicit key_error (const std::string& str) : std::runtime_error (str) {}
};
class CKey
{
protected:
EC_KEY* pkey;
bool fSet;
public:
typedef boost::shared_ptr<CKey> pointer;
CKey ()
{
pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
if (pkey == NULL)
throw key_error ("CKey::CKey() : EC_KEY_new_by_curve_name failed");
fSet = false;
}
CKey (const CKey& b)
{
pkey = EC_KEY_dup (b.pkey);
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
if (pkey == NULL)
throw key_error ("CKey::CKey(const CKey&) : EC_KEY_dup failed");
fSet = b.fSet;
}
CKey& operator= (const CKey& b)
{
if (!EC_KEY_copy (pkey, b.pkey))
throw key_error ("CKey::operator=(const CKey&) : EC_KEY_copy failed");
fSet = b.fSet;
return (*this);
}
~CKey ()
{
EC_KEY_free (pkey);
}
static uint128 PassPhraseToKey (const std::string& passPhrase);
static EC_KEY* GenerateRootDeterministicKey (const uint128& passPhrase);
static EC_KEY* GenerateRootPubKey (BIGNUM* pubGenerator);
static EC_KEY* GeneratePublicDeterministicKey (const RippleAddress& generator, int n);
static EC_KEY* GeneratePrivateDeterministicKey (const RippleAddress& family, const BIGNUM* rootPriv, int n);
static EC_KEY* GeneratePrivateDeterministicKey (const RippleAddress& family, uint256 const& rootPriv, int n);
CKey (const uint128& passPhrase) : fSet (false)
{
pkey = GenerateRootDeterministicKey (passPhrase);
fSet = true;
assert (pkey);
}
CKey (const RippleAddress& generator, int n) : fSet (false)
{
// public deterministic key
pkey = GeneratePublicDeterministicKey (generator, n);
fSet = true;
assert (pkey);
}
CKey (const RippleAddress& base, const BIGNUM* rootPrivKey, int n) : fSet (false)
{
// private deterministic key
pkey = GeneratePrivateDeterministicKey (base, rootPrivKey, n);
fSet = true;
assert (pkey);
}
CKey (uint256 const& privateKey) : pkey (NULL), fSet (false)
{
// XXX Broken pkey is null.
SetPrivateKeyU (privateKey);
}
#if 0
CKey (const RippleAddress& masterKey, int keyNum, bool isPublic) : pkey (NULL), fSet (false)
{
if (isPublic)
SetPubSeq (masterKey, keyNum);
else
SetPrivSeq (masterKey, keyNum); // broken, need seed
fSet = true;
}
#endif
bool IsNull () const
{
return !fSet;
}
void MakeNewKey ()
{
if (!EC_KEY_generate_key (pkey))
throw key_error ("CKey::MakeNewKey() : EC_KEY_generate_key failed");
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
fSet = true;
}
// XXX Still used!
BIGNUM* GetSecretBN () const
{
// DEPRECATED
return BN_dup (EC_KEY_get0_private_key (pkey));
}
void GetPrivateKeyU (uint256& privKey)
{
const BIGNUM* bn = EC_KEY_get0_private_key (pkey);
if (bn == NULL)
throw key_error ("CKey::GetPrivateKeyU: EC_KEY_get0_private_key failed");
privKey.zero ();
BN_bn2bin (bn, privKey.begin () + (privKey.size () - BN_num_bytes (bn)));
}
bool SetPrivateKeyU (uint256 const& key, bool bThrow = false)
{
// XXX Broken if pkey is not set.
BIGNUM* bn = BN_bin2bn (key.begin (), key.size (), NULL);
bool bSuccess = !!EC_KEY_set_private_key (pkey, bn);
BN_clear_free (bn);
if (bSuccess)
{
fSet = true;
}
else if (bThrow)
{
throw key_error ("CKey::SetPrivateKeyU: EC_KEY_set_private_key failed");
}
return bSuccess;
}
bool SetPubKey (const void* ptr, size_t len)
{
const unsigned char* pbegin = static_cast<const unsigned char*> (ptr);
if (!o2i_ECPublicKey (&pkey, &pbegin, len))
return false;
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
fSet = true;
return true;
}
bool SetPubKey (Blob const& vchPubKey)
{
return SetPubKey (&vchPubKey[0], vchPubKey.size ());
}
bool SetPubKey (const std::string& pubKey)
{
return SetPubKey (pubKey.data (), pubKey.size ());
}
Blob GetPubKey () const
{
unsigned int nSize = i2o_ECPublicKey (pkey, NULL);
assert (nSize <= 33);
if (!nSize)
throw key_error ("CKey::GetPubKey() : i2o_ECPublicKey failed");
Blob vchPubKey (33, 0);
unsigned char* pbegin = &vchPubKey[0];
if (i2o_ECPublicKey (pkey, &pbegin) != nSize)
throw key_error ("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
assert (vchPubKey.size () <= 33);
return vchPubKey;
}
bool Sign (uint256 const& hash, Blob& vchSig)
{
unsigned char pchSig[10000];
unsigned int nSize = 0;
vchSig.clear ();
if (!ECDSA_sign (0, (unsigned char*)hash.begin (), hash.size (), pchSig, &nSize, pkey))
return false;
vchSig.resize (nSize);
memcpy (&vchSig[0], pchSig, nSize);
return true;
}
bool Verify (uint256 const& hash, const void* sig, size_t sigLen) const
{
// -1 = error, 0 = bad sig, 1 = good
if (ECDSA_verify (0, hash.begin (), hash.size (), (const unsigned char*) sig, sigLen, pkey) != 1)
return false;
return true;
}
bool Verify (uint256 const& hash, Blob const& vchSig) const
{
return Verify (hash, &vchSig[0], vchSig.size ());
}
bool Verify (uint256 const& hash, const std::string& sig) const
{
return Verify (hash, sig.data (), sig.size ());
}
// ECIES functions. These throw on failure
// returns a 32-byte secret unique to these two keys. At least one private key must be known.
void getECIESSecret (CKey& otherKey, uint256& enc_key, uint256& hmac_key);
// encrypt/decrypt functions with integrity checking.
// Note that the other side must somehow know what keys to use
Blob encryptECIES (CKey& otherKey, Blob const& plaintext);
Blob decryptECIES (CKey& otherKey, Blob const& ciphertext);
};
#endif
// vim:ts=4

View File

@@ -0,0 +1,348 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// #define EC_DEBUG
// Functions to add CKey support for deterministic EC keys
// <-- seed
uint128 CKey::PassPhraseToKey (const std::string& passPhrase)
{
Serializer s;
s.addRaw (passPhrase);
uint256 hash256 = s.getSHA512Half ();
uint128 ret (hash256);
s.secureErase ();
return ret;
}
// --> seed
// <-- private root generator + public root generator
EC_KEY* CKey::GenerateRootDeterministicKey (const uint128& seed)
{
BN_CTX* ctx = BN_CTX_new ();
if (!ctx) return NULL;
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (!pkey)
{
BN_CTX_free (ctx);
return NULL;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
BIGNUM* order = BN_new ();
if (!order)
{
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return NULL;
}
if (!EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
{
assert (false);
BN_free (order);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return NULL;
}
BIGNUM* privKey = NULL;
int seq = 0;
do
{
// private key must be non-zero and less than the curve's order
Serializer s ((128 + 32) / 8);
s.add128 (seed);
s.add32 (seq++);
uint256 root = s.getSHA512Half ();
s.secureErase ();
privKey = BN_bin2bn ((const unsigned char*) &root, sizeof (root), privKey);
if (privKey == NULL)
{
EC_KEY_free (pkey);
BN_free (order);
BN_CTX_free (ctx);
}
root.zero ();
}
while (BN_is_zero (privKey) || (BN_cmp (privKey, order) >= 0));
BN_free (order);
if (!EC_KEY_set_private_key (pkey, privKey))
{
// set the random point as the private key
assert (false);
EC_KEY_free (pkey);
BN_clear_free (privKey);
BN_CTX_free (ctx);
return NULL;
}
EC_POINT* pubKey = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!EC_POINT_mul (EC_KEY_get0_group (pkey), pubKey, privKey, NULL, NULL, ctx))
{
// compute the corresponding public key point
assert (false);
BN_clear_free (privKey);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return NULL;
}
BN_clear_free (privKey);
if (!EC_KEY_set_public_key (pkey, pubKey))
{
assert (false);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return NULL;
}
EC_POINT_free (pubKey);
BN_CTX_free (ctx);
#ifdef EC_DEBUG
assert (EC_KEY_check_key (pkey) == 1); // CAUTION: This check is *very* expensive
#endif
return pkey;
}
// Take ripple address.
// --> root public generator (consumes)
// <-- root public generator in EC format
EC_KEY* CKey::GenerateRootPubKey (BIGNUM* pubGenerator)
{
if (pubGenerator == NULL)
{
assert (false);
return NULL;
}
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (!pkey)
{
BN_free (pubGenerator);
return NULL;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
EC_POINT* pubPoint = EC_POINT_bn2point (EC_KEY_get0_group (pkey), pubGenerator, NULL, NULL);
BN_free (pubGenerator);
if (!pubPoint)
{
assert (false);
EC_KEY_free (pkey);
return NULL;
}
if (!EC_KEY_set_public_key (pkey, pubPoint))
{
assert (false);
EC_POINT_free (pubPoint);
EC_KEY_free (pkey);
return NULL;
}
EC_POINT_free (pubPoint);
return pkey;
}
// --> public generator
static BIGNUM* makeHash (const RippleAddress& pubGen, int seq, BIGNUM* order)
{
int subSeq = 0;
BIGNUM* ret = NULL;
do
{
Serializer s ((33 * 8 + 32 + 32) / 8);
s.addRaw (pubGen.getGenerator ());
s.add32 (seq);
s.add32 (subSeq++);
uint256 root = s.getSHA512Half ();
s.secureErase ();
ret = BN_bin2bn ((const unsigned char*) &root, sizeof (root), ret);
if (!ret) return NULL;
}
while (BN_is_zero (ret) || (BN_cmp (ret, order) >= 0));
return ret;
}
// --> public generator
EC_KEY* CKey::GeneratePublicDeterministicKey (const RippleAddress& pubGen, int seq)
{
// publicKey(n) = rootPublicKey EC_POINT_+ Hash(pubHash|seq)*point
EC_KEY* rootKey = CKey::GenerateRootPubKey (pubGen.getGeneratorBN ());
const EC_POINT* rootPubKey = EC_KEY_get0_public_key (rootKey);
BN_CTX* ctx = BN_CTX_new ();
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
EC_POINT* newPoint = 0;
BIGNUM* order = 0;
BIGNUM* hash = 0;
bool success = true;
if (!ctx || !pkey) success = false;
if (success)
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
if (success)
{
newPoint = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!newPoint) success = false;
}
if (success)
{
order = BN_new ();
if (!order || !EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
success = false;
}
// Calculate the private additional key.
if (success)
{
hash = makeHash (pubGen, seq, order);
if (!hash) success = false;
}
if (success)
{
// Calculate the corresponding public key.
EC_POINT_mul (EC_KEY_get0_group (pkey), newPoint, hash, NULL, NULL, ctx);
// Add the master public key and set.
EC_POINT_add (EC_KEY_get0_group (pkey), newPoint, newPoint, rootPubKey, ctx);
EC_KEY_set_public_key (pkey, newPoint);
}
if (order) BN_free (order);
if (hash) BN_free (hash);
if (newPoint) EC_POINT_free (newPoint);
if (ctx) BN_CTX_free (ctx);
if (rootKey) EC_KEY_free (rootKey);
if (pkey && !success) EC_KEY_free (pkey);
return success ? pkey : NULL;
}
EC_KEY* CKey::GeneratePrivateDeterministicKey (const RippleAddress& pubGen, uint256 const& u, int seq)
{
CBigNum bn (u);
return GeneratePrivateDeterministicKey (pubGen, static_cast<BIGNUM*> (&bn), seq);
}
// --> root private key
EC_KEY* CKey::GeneratePrivateDeterministicKey (const RippleAddress& pubGen, const BIGNUM* rootPrivKey, int seq)
{
// privateKey(n) = (rootPrivateKey + Hash(pubHash|seq)) % order
BN_CTX* ctx = BN_CTX_new ();
if (ctx == NULL) return NULL;
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (pkey == NULL)
{
BN_CTX_free (ctx);
return NULL;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
BIGNUM* order = BN_new ();
if (order == NULL)
{
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return NULL;
}
if (!EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
{
BN_free (order);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return NULL;
}
// calculate the private additional key
BIGNUM* privKey = makeHash (pubGen, seq, order);
if (privKey == NULL)
{
BN_free (order);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return NULL;
}
// calculate the final private key
BN_mod_add (privKey, privKey, rootPrivKey, order, ctx);
BN_free (order);
EC_KEY_set_private_key (pkey, privKey);
// compute the corresponding public key
EC_POINT* pubKey = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!pubKey)
{
BN_clear_free (privKey);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return NULL;
}
if (EC_POINT_mul (EC_KEY_get0_group (pkey), pubKey, privKey, NULL, NULL, ctx) == 0)
{
BN_clear_free (privKey);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return NULL;
}
BN_clear_free (privKey);
EC_KEY_set_public_key (pkey, pubKey);
EC_POINT_free (pubKey);
BN_CTX_free (ctx);
return pkey;
}

View File

@@ -0,0 +1,316 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// ECIES uses elliptic curve keys to send an encrypted message.
// A shared secret is generated from one public key and one private key.
// The same key results regardless of which key is public and which private.
// Anonymous messages can be sent by generating an ephemeral public/private
// key pair, using that private key with the recipient's public key to
// encrypt and publishing the ephemeral public key. Non-anonymous messages
// can be sent by using your own private key with the recipient's public key.
// A random IV is used to encrypt the message and an HMAC is used to ensure
// message integrity. If you need timestamps or need to tell the recipient
// which key to use (his, yours, or ephemeral) you must add that data.
// (Obviously, key information can't go in the encrypted portion anyway.)
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
// 2) Encrypted: HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
// ECIES operations throw on any error such as a corrupt message or incorrect
// key. They *must* be called in try/catch blocks.
// Algorithmic choices:
#define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret
#define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret
#define ECIES_MIN_SEC (128/8) // The minimum equivalent security
#define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm
#define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size
#define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size
#define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV
#define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm
#define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key
#define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC value
void CKey::getECIESSecret (CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key)
{
// Retrieve a secret generated from an EC key pair. At least one private key must be known.
if (!pkey || !otherKey.pkey)
throw std::runtime_error ("missing key");
EC_KEY* pubkey, *privkey;
if (EC_KEY_get0_private_key (pkey))
{
privkey = pkey;
pubkey = otherKey.pkey;
}
else if (EC_KEY_get0_private_key (otherKey.pkey))
{
privkey = otherKey.pkey;
pubkey = pkey;
}
else throw std::runtime_error ("no private key");
unsigned char rawbuf[512];
int buflen = ECDH_compute_key (rawbuf, 512, EC_KEY_get0_public_key (pubkey), privkey, NULL);
if (buflen < ECIES_MIN_SEC)
throw std::runtime_error ("ecdh key failed");
unsigned char hbuf[ECIES_KEY_LENGTH];
ECIES_KEY_HASH (rawbuf, buflen, hbuf);
memset (rawbuf, 0, ECIES_HMAC_KEY_SIZE);
assert ((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH);
memcpy (enc_key.begin (), hbuf, ECIES_ENC_KEY_SIZE);
memcpy (hmac_key.begin (), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE);
memset (hbuf, 0, ECIES_KEY_LENGTH);
}
static ECIES_HMAC_TYPE makeHMAC (const ECIES_HMAC_KEY_TYPE& secret, Blob const& data)
{
HMAC_CTX ctx;
HMAC_CTX_init (&ctx);
if (HMAC_Init_ex (&ctx, secret.begin (), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("init hmac");
}
if (HMAC_Update (&ctx, & (data.front ()), data.size ()) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("update hmac");
}
ECIES_HMAC_TYPE ret;
unsigned int ml = ECIES_HMAC_SIZE;
if (HMAC_Final (&ctx, ret.begin (), &ml) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("finalize hmac");
}
assert (ml == ECIES_HMAC_SIZE);
HMAC_CTX_cleanup (&ctx);
return ret;
}
Blob CKey::encryptECIES (CKey& otherKey, Blob const& plaintext)
{
ECIES_ENC_IV_TYPE iv;
RandomNumbers::getInstance ().fillBytes (iv.begin (), ECIES_ENC_BLK_SIZE);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret (otherKey, secret, hmacKey);
ECIES_HMAC_TYPE hmac = makeHMAC (hmacKey, plaintext);
hmacKey.zero ();
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init (&ctx);
if (EVP_EncryptInit_ex (&ctx, ECIES_ENC_ALGO, NULL, secret.begin (), iv.begin ()) != 1)
{
EVP_CIPHER_CTX_cleanup (&ctx);
secret.zero ();
throw std::runtime_error ("init cipher ctx");
}
secret.zero ();
Blob out (plaintext.size () + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0);
int len = 0, bytesWritten;
// output IV
memcpy (& (out.front ()), iv.begin (), ECIES_ENC_BLK_SIZE);
len = ECIES_ENC_BLK_SIZE;
// Encrypt/output HMAC
bytesWritten = out.capacity () - len;
assert (bytesWritten > 0);
if (EVP_EncryptUpdate (&ctx, & (out.front ()) + len, &bytesWritten, hmac.begin (), ECIES_HMAC_SIZE) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("");
}
len += bytesWritten;
// encrypt/output plaintext
bytesWritten = out.capacity () - len;
assert (bytesWritten > 0);
if (EVP_EncryptUpdate (&ctx, & (out.front ()) + len, &bytesWritten, & (plaintext.front ()), plaintext.size ()) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("");
}
len += bytesWritten;
// finalize
bytesWritten = out.capacity () - len;
if (EVP_EncryptFinal_ex (&ctx, & (out.front ()) + len, &bytesWritten) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("encryption error");
}
len += bytesWritten;
// Output contains: IV, encrypted HMAC, encrypted data, encrypted padding
assert (len <= (plaintext.size () + ECIES_HMAC_SIZE + (2 * ECIES_ENC_BLK_SIZE)));
assert (len >= (plaintext.size () + ECIES_HMAC_SIZE + ECIES_ENC_BLK_SIZE)); // IV, HMAC, data
out.resize (len);
EVP_CIPHER_CTX_cleanup (&ctx);
return out;
}
Blob CKey::decryptECIES (CKey& otherKey, Blob const& ciphertext)
{
// minimum ciphertext = IV + HMAC + 1 block
if (ciphertext.size () < ((2 * ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
throw std::runtime_error ("ciphertext too short");
// extract IV
ECIES_ENC_IV_TYPE iv;
memcpy (iv.begin (), & (ciphertext.front ()), ECIES_ENC_BLK_SIZE);
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init (&ctx);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret (otherKey, secret, hmacKey);
if (EVP_DecryptInit_ex (&ctx, ECIES_ENC_ALGO, NULL, secret.begin (), iv.begin ()) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to init cipher");
}
// decrypt mac
ECIES_HMAC_TYPE hmac;
int outlen = ECIES_HMAC_SIZE;
if ( (EVP_DecryptUpdate (&ctx, hmac.begin (), &outlen,
& (ciphertext.front ()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) )
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to extract hmac");
}
// decrypt plaintext (after IV and encrypted mac)
Blob plaintext (ciphertext.size () - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE);
outlen = plaintext.size ();
if (EVP_DecryptUpdate (&ctx, & (plaintext.front ()), &outlen,
& (ciphertext.front ()) + ECIES_ENC_BLK_SIZE + ECIES_HMAC_SIZE + 1,
ciphertext.size () - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to extract plaintext");
}
// decrypt padding
int flen = 0;
if (EVP_DecryptFinal (&ctx, & (plaintext.front ()) + outlen, &flen) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("plaintext had bad padding");
}
plaintext.resize (flen + outlen);
// verify integrity
if (hmac != makeHMAC (hmacKey, plaintext))
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("plaintext had bad hmac");
}
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
return plaintext;
}
bool checkECIES (void)
{
CKey senderPriv, recipientPriv, senderPub, recipientPub;
for (int i = 0; i < 30000; ++i)
{
if ((i % 100) == 0)
{
// generate new keys every 100 times
// Log::out() << "new keys";
senderPriv.MakeNewKey ();
recipientPriv.MakeNewKey ();
if (!senderPub.SetPubKey (senderPriv.GetPubKey ()))
throw std::runtime_error ("key error");
if (!recipientPub.SetPubKey (recipientPriv.GetPubKey ()))
throw std::runtime_error ("key error");
}
// generate message
Blob message (4096);
int msglen = i % 3000;
RandomNumbers::getInstance ().fillBytes (&message.front (), msglen);
message.resize (msglen);
// encrypt message with sender's private key and recipient's public key
Blob ciphertext = senderPriv.encryptECIES (recipientPub, message);
// decrypt message with recipient's private key and sender's public key
Blob decrypt = recipientPriv.decryptECIES (senderPub, ciphertext);
if (decrypt != message)
{
assert (false);
return false;
}
//Log::out() << "Msg(" << msglen << ") ok " << ciphertext.size();
}
return true;
}
// vim:ts=4

View File

@@ -0,0 +1,481 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
//
// RFC 1751 code converted to C++/Boost.
//
char const* RFC1751::s_dictionary [2048] =
{
"A", "ABE", "ACE", "ACT", "AD", "ADA", "ADD",
"AGO", "AID", "AIM", "AIR", "ALL", "ALP", "AM", "AMY", "AN", "ANA",
"AND", "ANN", "ANT", "ANY", "APE", "APS", "APT", "ARC", "ARE", "ARK",
"ARM", "ART", "AS", "ASH", "ASK", "AT", "ATE", "AUG", "AUK", "AVE",
"AWE", "AWK", "AWL", "AWN", "AX", "AYE", "BAD", "BAG", "BAH", "BAM",
"BAN", "BAR", "BAT", "BAY", "BE", "BED", "BEE", "BEG", "BEN", "BET",
"BEY", "BIB", "BID", "BIG", "BIN", "BIT", "BOB", "BOG", "BON", "BOO",
"BOP", "BOW", "BOY", "BUB", "BUD", "BUG", "BUM", "BUN", "BUS", "BUT",
"BUY", "BY", "BYE", "CAB", "CAL", "CAM", "CAN", "CAP", "CAR", "CAT",
"CAW", "COD", "COG", "COL", "CON", "COO", "COP", "COT", "COW", "COY",
"CRY", "CUB", "CUE", "CUP", "CUR", "CUT", "DAB", "DAD", "DAM", "DAN",
"DAR", "DAY", "DEE", "DEL", "DEN", "DES", "DEW", "DID", "DIE", "DIG",
"DIN", "DIP", "DO", "DOE", "DOG", "DON", "DOT", "DOW", "DRY", "DUB",
"DUD", "DUE", "DUG", "DUN", "EAR", "EAT", "ED", "EEL", "EGG", "EGO",
"ELI", "ELK", "ELM", "ELY", "EM", "END", "EST", "ETC", "EVA", "EVE",
"EWE", "EYE", "FAD", "FAN", "FAR", "FAT", "FAY", "FED", "FEE", "FEW",
"FIB", "FIG", "FIN", "FIR", "FIT", "FLO", "FLY", "FOE", "FOG", "FOR",
"FRY", "FUM", "FUN", "FUR", "GAB", "GAD", "GAG", "GAL", "GAM", "GAP",
"GAS", "GAY", "GEE", "GEL", "GEM", "GET", "GIG", "GIL", "GIN", "GO",
"GOT", "GUM", "GUN", "GUS", "GUT", "GUY", "GYM", "GYP", "HA", "HAD",
"HAL", "HAM", "HAN", "HAP", "HAS", "HAT", "HAW", "HAY", "HE", "HEM",
"HEN", "HER", "HEW", "HEY", "HI", "HID", "HIM", "HIP", "HIS", "HIT",
"HO", "HOB", "HOC", "HOE", "HOG", "HOP", "HOT", "HOW", "HUB", "HUE",
"HUG", "HUH", "HUM", "HUT", "I", "ICY", "IDA", "IF", "IKE", "ILL",
"INK", "INN", "IO", "ION", "IQ", "IRA", "IRE", "IRK", "IS", "IT", "ITS",
"IVY", "JAB", "JAG", "JAM", "JAN", "JAR", "JAW", "JAY", "JET", "JIG",
"JIM", "JO", "JOB", "JOE", "JOG", "JOT", "JOY", "JUG", "JUT", "KAY",
"KEG", "KEN", "KEY", "KID", "KIM", "KIN", "KIT", "LA", "LAB", "LAC",
"LAD", "LAG", "LAM", "LAP", "LAW", "LAY", "LEA", "LED", "LEE", "LEG",
"LEN", "LEO", "LET", "LEW", "LID", "LIE", "LIN", "LIP", "LIT", "LO",
"LOB", "LOG", "LOP", "LOS", "LOT", "LOU", "LOW", "LOY", "LUG", "LYE",
"MA", "MAC", "MAD", "MAE", "MAN", "MAO", "MAP", "MAT", "MAW", "MAY",
"ME", "MEG", "MEL", "MEN", "MET", "MEW", "MID", "MIN", "MIT", "MOB",
"MOD", "MOE", "MOO", "MOP", "MOS", "MOT", "MOW", "MUD", "MUG", "MUM",
"MY", "NAB", "NAG", "NAN", "NAP", "NAT", "NAY", "NE", "NED", "NEE",
"NET", "NEW", "NIB", "NIL", "NIP", "NIT", "NO", "NOB", "NOD", "NON",
"NOR", "NOT", "NOV", "NOW", "NU", "NUN", "NUT", "O", "OAF", "OAK",
"OAR", "OAT", "ODD", "ODE", "OF", "OFF", "OFT", "OH", "OIL", "OK",
"OLD", "ON", "ONE", "OR", "ORB", "ORE", "ORR", "OS", "OTT", "OUR",
"OUT", "OVA", "OW", "OWE", "OWL", "OWN", "OX", "PA", "PAD", "PAL",
"PAM", "PAN", "PAP", "PAR", "PAT", "PAW", "PAY", "PEA", "PEG", "PEN",
"PEP", "PER", "PET", "PEW", "PHI", "PI", "PIE", "PIN", "PIT", "PLY",
"PO", "POD", "POE", "POP", "POT", "POW", "PRO", "PRY", "PUB", "PUG",
"PUN", "PUP", "PUT", "QUO", "RAG", "RAM", "RAN", "RAP", "RAT", "RAW",
"RAY", "REB", "RED", "REP", "RET", "RIB", "RID", "RIG", "RIM", "RIO",
"RIP", "ROB", "ROD", "ROE", "RON", "ROT", "ROW", "ROY", "RUB", "RUE",
"RUG", "RUM", "RUN", "RYE", "SAC", "SAD", "SAG", "SAL", "SAM", "SAN",
"SAP", "SAT", "SAW", "SAY", "SEA", "SEC", "SEE", "SEN", "SET", "SEW",
"SHE", "SHY", "SIN", "SIP", "SIR", "SIS", "SIT", "SKI", "SKY", "SLY",
"SO", "SOB", "SOD", "SON", "SOP", "SOW", "SOY", "SPA", "SPY", "SUB",
"SUD", "SUE", "SUM", "SUN", "SUP", "TAB", "TAD", "TAG", "TAN", "TAP",
"TAR", "TEA", "TED", "TEE", "TEN", "THE", "THY", "TIC", "TIE", "TIM",
"TIN", "TIP", "TO", "TOE", "TOG", "TOM", "TON", "TOO", "TOP", "TOW",
"TOY", "TRY", "TUB", "TUG", "TUM", "TUN", "TWO", "UN", "UP", "US",
"USE", "VAN", "VAT", "VET", "VIE", "WAD", "WAG", "WAR", "WAS", "WAY",
"WE", "WEB", "WED", "WEE", "WET", "WHO", "WHY", "WIN", "WIT", "WOK",
"WON", "WOO", "WOW", "WRY", "WU", "YAM", "YAP", "YAW", "YE", "YEA",
"YES", "YET", "YOU", "ABED", "ABEL", "ABET", "ABLE", "ABUT", "ACHE",
"ACID", "ACME", "ACRE", "ACTA", "ACTS", "ADAM", "ADDS", "ADEN", "AFAR",
"AFRO", "AGEE", "AHEM", "AHOY", "AIDA", "AIDE", "AIDS", "AIRY", "AJAR",
"AKIN", "ALAN", "ALEC", "ALGA", "ALIA", "ALLY", "ALMA", "ALOE", "ALSO",
"ALTO", "ALUM", "ALVA", "AMEN", "AMES", "AMID", "AMMO", "AMOK", "AMOS",
"AMRA", "ANDY", "ANEW", "ANNA", "ANNE", "ANTE", "ANTI", "AQUA", "ARAB",
"ARCH", "AREA", "ARGO", "ARID", "ARMY", "ARTS", "ARTY", "ASIA", "ASKS",
"ATOM", "AUNT", "AURA", "AUTO", "AVER", "AVID", "AVIS", "AVON", "AVOW",
"AWAY", "AWRY", "BABE", "BABY", "BACH", "BACK", "BADE", "BAIL", "BAIT",
"BAKE", "BALD", "BALE", "BALI", "BALK", "BALL", "BALM", "BAND", "BANE",
"BANG", "BANK", "BARB", "BARD", "BARE", "BARK", "BARN", "BARR", "BASE",
"BASH", "BASK", "BASS", "BATE", "BATH", "BAWD", "BAWL", "BEAD", "BEAK",
"BEAM", "BEAN", "BEAR", "BEAT", "BEAU", "BECK", "BEEF", "BEEN", "BEER",
"BEET", "BELA", "BELL", "BELT", "BEND", "BENT", "BERG", "BERN", "BERT",
"BESS", "BEST", "BETA", "BETH", "BHOY", "BIAS", "BIDE", "BIEN", "BILE",
"BILK", "BILL", "BIND", "BING", "BIRD", "BITE", "BITS", "BLAB", "BLAT",
"BLED", "BLEW", "BLOB", "BLOC", "BLOT", "BLOW", "BLUE", "BLUM", "BLUR",
"BOAR", "BOAT", "BOCA", "BOCK", "BODE", "BODY", "BOGY", "BOHR", "BOIL",
"BOLD", "BOLO", "BOLT", "BOMB", "BONA", "BOND", "BONE", "BONG", "BONN",
"BONY", "BOOK", "BOOM", "BOON", "BOOT", "BORE", "BORG", "BORN", "BOSE",
"BOSS", "BOTH", "BOUT", "BOWL", "BOYD", "BRAD", "BRAE", "BRAG", "BRAN",
"BRAY", "BRED", "BREW", "BRIG", "BRIM", "BROW", "BUCK", "BUDD", "BUFF",
"BULB", "BULK", "BULL", "BUNK", "BUNT", "BUOY", "BURG", "BURL", "BURN",
"BURR", "BURT", "BURY", "BUSH", "BUSS", "BUST", "BUSY", "BYTE", "CADY",
"CAFE", "CAGE", "CAIN", "CAKE", "CALF", "CALL", "CALM", "CAME", "CANE",
"CANT", "CARD", "CARE", "CARL", "CARR", "CART", "CASE", "CASH", "CASK",
"CAST", "CAVE", "CEIL", "CELL", "CENT", "CERN", "CHAD", "CHAR", "CHAT",
"CHAW", "CHEF", "CHEN", "CHEW", "CHIC", "CHIN", "CHOU", "CHOW", "CHUB",
"CHUG", "CHUM", "CITE", "CITY", "CLAD", "CLAM", "CLAN", "CLAW", "CLAY",
"CLOD", "CLOG", "CLOT", "CLUB", "CLUE", "COAL", "COAT", "COCA", "COCK",
"COCO", "CODA", "CODE", "CODY", "COED", "COIL", "COIN", "COKE", "COLA",
"COLD", "COLT", "COMA", "COMB", "COME", "COOK", "COOL", "COON", "COOT",
"CORD", "CORE", "CORK", "CORN", "COST", "COVE", "COWL", "CRAB", "CRAG",
"CRAM", "CRAY", "CREW", "CRIB", "CROW", "CRUD", "CUBA", "CUBE", "CUFF",
"CULL", "CULT", "CUNY", "CURB", "CURD", "CURE", "CURL", "CURT", "CUTS",
"DADE", "DALE", "DAME", "DANA", "DANE", "DANG", "DANK", "DARE", "DARK",
"DARN", "DART", "DASH", "DATA", "DATE", "DAVE", "DAVY", "DAWN", "DAYS",
"DEAD", "DEAF", "DEAL", "DEAN", "DEAR", "DEBT", "DECK", "DEED", "DEEM",
"DEER", "DEFT", "DEFY", "DELL", "DENT", "DENY", "DESK", "DIAL", "DICE",
"DIED", "DIET", "DIME", "DINE", "DING", "DINT", "DIRE", "DIRT", "DISC",
"DISH", "DISK", "DIVE", "DOCK", "DOES", "DOLE", "DOLL", "DOLT", "DOME",
"DONE", "DOOM", "DOOR", "DORA", "DOSE", "DOTE", "DOUG", "DOUR", "DOVE",
"DOWN", "DRAB", "DRAG", "DRAM", "DRAW", "DREW", "DRUB", "DRUG", "DRUM",
"DUAL", "DUCK", "DUCT", "DUEL", "DUET", "DUKE", "DULL", "DUMB", "DUNE",
"DUNK", "DUSK", "DUST", "DUTY", "EACH", "EARL", "EARN", "EASE", "EAST",
"EASY", "EBEN", "ECHO", "EDDY", "EDEN", "EDGE", "EDGY", "EDIT", "EDNA",
"EGAN", "ELAN", "ELBA", "ELLA", "ELSE", "EMIL", "EMIT", "EMMA", "ENDS",
"ERIC", "EROS", "EVEN", "EVER", "EVIL", "EYED", "FACE", "FACT", "FADE",
"FAIL", "FAIN", "FAIR", "FAKE", "FALL", "FAME", "FANG", "FARM", "FAST",
"FATE", "FAWN", "FEAR", "FEAT", "FEED", "FEEL", "FEET", "FELL", "FELT",
"FEND", "FERN", "FEST", "FEUD", "FIEF", "FIGS", "FILE", "FILL", "FILM",
"FIND", "FINE", "FINK", "FIRE", "FIRM", "FISH", "FISK", "FIST", "FITS",
"FIVE", "FLAG", "FLAK", "FLAM", "FLAT", "FLAW", "FLEA", "FLED", "FLEW",
"FLIT", "FLOC", "FLOG", "FLOW", "FLUB", "FLUE", "FOAL", "FOAM", "FOGY",
"FOIL", "FOLD", "FOLK", "FOND", "FONT", "FOOD", "FOOL", "FOOT", "FORD",
"FORE", "FORK", "FORM", "FORT", "FOSS", "FOUL", "FOUR", "FOWL", "FRAU",
"FRAY", "FRED", "FREE", "FRET", "FREY", "FROG", "FROM", "FUEL", "FULL",
"FUME", "FUND", "FUNK", "FURY", "FUSE", "FUSS", "GAFF", "GAGE", "GAIL",
"GAIN", "GAIT", "GALA", "GALE", "GALL", "GALT", "GAME", "GANG", "GARB",
"GARY", "GASH", "GATE", "GAUL", "GAUR", "GAVE", "GAWK", "GEAR", "GELD",
"GENE", "GENT", "GERM", "GETS", "GIBE", "GIFT", "GILD", "GILL", "GILT",
"GINA", "GIRD", "GIRL", "GIST", "GIVE", "GLAD", "GLEE", "GLEN", "GLIB",
"GLOB", "GLOM", "GLOW", "GLUE", "GLUM", "GLUT", "GOAD", "GOAL", "GOAT",
"GOER", "GOES", "GOLD", "GOLF", "GONE", "GONG", "GOOD", "GOOF", "GORE",
"GORY", "GOSH", "GOUT", "GOWN", "GRAB", "GRAD", "GRAY", "GREG", "GREW",
"GREY", "GRID", "GRIM", "GRIN", "GRIT", "GROW", "GRUB", "GULF", "GULL",
"GUNK", "GURU", "GUSH", "GUST", "GWEN", "GWYN", "HAAG", "HAAS", "HACK",
"HAIL", "HAIR", "HALE", "HALF", "HALL", "HALO", "HALT", "HAND", "HANG",
"HANK", "HANS", "HARD", "HARK", "HARM", "HART", "HASH", "HAST", "HATE",
"HATH", "HAUL", "HAVE", "HAWK", "HAYS", "HEAD", "HEAL", "HEAR", "HEAT",
"HEBE", "HECK", "HEED", "HEEL", "HEFT", "HELD", "HELL", "HELM", "HERB",
"HERD", "HERE", "HERO", "HERS", "HESS", "HEWN", "HICK", "HIDE", "HIGH",
"HIKE", "HILL", "HILT", "HIND", "HINT", "HIRE", "HISS", "HIVE", "HOBO",
"HOCK", "HOFF", "HOLD", "HOLE", "HOLM", "HOLT", "HOME", "HONE", "HONK",
"HOOD", "HOOF", "HOOK", "HOOT", "HORN", "HOSE", "HOST", "HOUR", "HOVE",
"HOWE", "HOWL", "HOYT", "HUCK", "HUED", "HUFF", "HUGE", "HUGH", "HUGO",
"HULK", "HULL", "HUNK", "HUNT", "HURD", "HURL", "HURT", "HUSH", "HYDE",
"HYMN", "IBIS", "ICON", "IDEA", "IDLE", "IFFY", "INCA", "INCH", "INTO",
"IONS", "IOTA", "IOWA", "IRIS", "IRMA", "IRON", "ISLE", "ITCH", "ITEM",
"IVAN", "JACK", "JADE", "JAIL", "JAKE", "JANE", "JAVA", "JEAN", "JEFF",
"JERK", "JESS", "JEST", "JIBE", "JILL", "JILT", "JIVE", "JOAN", "JOBS",
"JOCK", "JOEL", "JOEY", "JOHN", "JOIN", "JOKE", "JOLT", "JOVE", "JUDD",
"JUDE", "JUDO", "JUDY", "JUJU", "JUKE", "JULY", "JUNE", "JUNK", "JUNO",
"JURY", "JUST", "JUTE", "KAHN", "KALE", "KANE", "KANT", "KARL", "KATE",
"KEEL", "KEEN", "KENO", "KENT", "KERN", "KERR", "KEYS", "KICK", "KILL",
"KIND", "KING", "KIRK", "KISS", "KITE", "KLAN", "KNEE", "KNEW", "KNIT",
"KNOB", "KNOT", "KNOW", "KOCH", "KONG", "KUDO", "KURD", "KURT", "KYLE",
"LACE", "LACK", "LACY", "LADY", "LAID", "LAIN", "LAIR", "LAKE", "LAMB",
"LAME", "LAND", "LANE", "LANG", "LARD", "LARK", "LASS", "LAST", "LATE",
"LAUD", "LAVA", "LAWN", "LAWS", "LAYS", "LEAD", "LEAF", "LEAK", "LEAN",
"LEAR", "LEEK", "LEER", "LEFT", "LEND", "LENS", "LENT", "LEON", "LESK",
"LESS", "LEST", "LETS", "LIAR", "LICE", "LICK", "LIED", "LIEN", "LIES",
"LIEU", "LIFE", "LIFT", "LIKE", "LILA", "LILT", "LILY", "LIMA", "LIMB",
"LIME", "LIND", "LINE", "LINK", "LINT", "LION", "LISA", "LIST", "LIVE",
"LOAD", "LOAF", "LOAM", "LOAN", "LOCK", "LOFT", "LOGE", "LOIS", "LOLA",
"LONE", "LONG", "LOOK", "LOON", "LOOT", "LORD", "LORE", "LOSE", "LOSS",
"LOST", "LOUD", "LOVE", "LOWE", "LUCK", "LUCY", "LUGE", "LUKE", "LULU",
"LUND", "LUNG", "LURA", "LURE", "LURK", "LUSH", "LUST", "LYLE", "LYNN",
"LYON", "LYRA", "MACE", "MADE", "MAGI", "MAID", "MAIL", "MAIN", "MAKE",
"MALE", "MALI", "MALL", "MALT", "MANA", "MANN", "MANY", "MARC", "MARE",
"MARK", "MARS", "MART", "MARY", "MASH", "MASK", "MASS", "MAST", "MATE",
"MATH", "MAUL", "MAYO", "MEAD", "MEAL", "MEAN", "MEAT", "MEEK", "MEET",
"MELD", "MELT", "MEMO", "MEND", "MENU", "MERT", "MESH", "MESS", "MICE",
"MIKE", "MILD", "MILE", "MILK", "MILL", "MILT", "MIMI", "MIND", "MINE",
"MINI", "MINK", "MINT", "MIRE", "MISS", "MIST", "MITE", "MITT", "MOAN",
"MOAT", "MOCK", "MODE", "MOLD", "MOLE", "MOLL", "MOLT", "MONA", "MONK",
"MONT", "MOOD", "MOON", "MOOR", "MOOT", "MORE", "MORN", "MORT", "MOSS",
"MOST", "MOTH", "MOVE", "MUCH", "MUCK", "MUDD", "MUFF", "MULE", "MULL",
"MURK", "MUSH", "MUST", "MUTE", "MUTT", "MYRA", "MYTH", "NAGY", "NAIL",
"NAIR", "NAME", "NARY", "NASH", "NAVE", "NAVY", "NEAL", "NEAR", "NEAT",
"NECK", "NEED", "NEIL", "NELL", "NEON", "NERO", "NESS", "NEST", "NEWS",
"NEWT", "NIBS", "NICE", "NICK", "NILE", "NINA", "NINE", "NOAH", "NODE",
"NOEL", "NOLL", "NONE", "NOOK", "NOON", "NORM", "NOSE", "NOTE", "NOUN",
"NOVA", "NUDE", "NULL", "NUMB", "OATH", "OBEY", "OBOE", "ODIN", "OHIO",
"OILY", "OINT", "OKAY", "OLAF", "OLDY", "OLGA", "OLIN", "OMAN", "OMEN",
"OMIT", "ONCE", "ONES", "ONLY", "ONTO", "ONUS", "ORAL", "ORGY", "OSLO",
"OTIS", "OTTO", "OUCH", "OUST", "OUTS", "OVAL", "OVEN", "OVER", "OWLY",
"OWNS", "QUAD", "QUIT", "QUOD", "RACE", "RACK", "RACY", "RAFT", "RAGE",
"RAID", "RAIL", "RAIN", "RAKE", "RANK", "RANT", "RARE", "RASH", "RATE",
"RAVE", "RAYS", "READ", "REAL", "REAM", "REAR", "RECK", "REED", "REEF",
"REEK", "REEL", "REID", "REIN", "RENA", "REND", "RENT", "REST", "RICE",
"RICH", "RICK", "RIDE", "RIFT", "RILL", "RIME", "RING", "RINK", "RISE",
"RISK", "RITE", "ROAD", "ROAM", "ROAR", "ROBE", "ROCK", "RODE", "ROIL",
"ROLL", "ROME", "ROOD", "ROOF", "ROOK", "ROOM", "ROOT", "ROSA", "ROSE",
"ROSS", "ROSY", "ROTH", "ROUT", "ROVE", "ROWE", "ROWS", "RUBE", "RUBY",
"RUDE", "RUDY", "RUIN", "RULE", "RUNG", "RUNS", "RUNT", "RUSE", "RUSH",
"RUSK", "RUSS", "RUST", "RUTH", "SACK", "SAFE", "SAGE", "SAID", "SAIL",
"SALE", "SALK", "SALT", "SAME", "SAND", "SANE", "SANG", "SANK", "SARA",
"SAUL", "SAVE", "SAYS", "SCAN", "SCAR", "SCAT", "SCOT", "SEAL", "SEAM",
"SEAR", "SEAT", "SEED", "SEEK", "SEEM", "SEEN", "SEES", "SELF", "SELL",
"SEND", "SENT", "SETS", "SEWN", "SHAG", "SHAM", "SHAW", "SHAY", "SHED",
"SHIM", "SHIN", "SHOD", "SHOE", "SHOT", "SHOW", "SHUN", "SHUT", "SICK",
"SIDE", "SIFT", "SIGH", "SIGN", "SILK", "SILL", "SILO", "SILT", "SINE",
"SING", "SINK", "SIRE", "SITE", "SITS", "SITU", "SKAT", "SKEW", "SKID",
"SKIM", "SKIN", "SKIT", "SLAB", "SLAM", "SLAT", "SLAY", "SLED", "SLEW",
"SLID", "SLIM", "SLIT", "SLOB", "SLOG", "SLOT", "SLOW", "SLUG", "SLUM",
"SLUR", "SMOG", "SMUG", "SNAG", "SNOB", "SNOW", "SNUB", "SNUG", "SOAK",
"SOAR", "SOCK", "SODA", "SOFA", "SOFT", "SOIL", "SOLD", "SOME", "SONG",
"SOON", "SOOT", "SORE", "SORT", "SOUL", "SOUR", "SOWN", "STAB", "STAG",
"STAN", "STAR", "STAY", "STEM", "STEW", "STIR", "STOW", "STUB", "STUN",
"SUCH", "SUDS", "SUIT", "SULK", "SUMS", "SUNG", "SUNK", "SURE", "SURF",
"SWAB", "SWAG", "SWAM", "SWAN", "SWAT", "SWAY", "SWIM", "SWUM", "TACK",
"TACT", "TAIL", "TAKE", "TALE", "TALK", "TALL", "TANK", "TASK", "TATE",
"TAUT", "TEAL", "TEAM", "TEAR", "TECH", "TEEM", "TEEN", "TEET", "TELL",
"TEND", "TENT", "TERM", "TERN", "TESS", "TEST", "THAN", "THAT", "THEE",
"THEM", "THEN", "THEY", "THIN", "THIS", "THUD", "THUG", "TICK", "TIDE",
"TIDY", "TIED", "TIER", "TILE", "TILL", "TILT", "TIME", "TINA", "TINE",
"TINT", "TINY", "TIRE", "TOAD", "TOGO", "TOIL", "TOLD", "TOLL", "TONE",
"TONG", "TONY", "TOOK", "TOOL", "TOOT", "TORE", "TORN", "TOTE", "TOUR",
"TOUT", "TOWN", "TRAG", "TRAM", "TRAY", "TREE", "TREK", "TRIG", "TRIM",
"TRIO", "TROD", "TROT", "TROY", "TRUE", "TUBA", "TUBE", "TUCK", "TUFT",
"TUNA", "TUNE", "TUNG", "TURF", "TURN", "TUSK", "TWIG", "TWIN", "TWIT",
"ULAN", "UNIT", "URGE", "USED", "USER", "USES", "UTAH", "VAIL", "VAIN",
"VALE", "VARY", "VASE", "VAST", "VEAL", "VEDA", "VEIL", "VEIN", "VEND",
"VENT", "VERB", "VERY", "VETO", "VICE", "VIEW", "VINE", "VISE", "VOID",
"VOLT", "VOTE", "WACK", "WADE", "WAGE", "WAIL", "WAIT", "WAKE", "WALE",
"WALK", "WALL", "WALT", "WAND", "WANE", "WANG", "WANT", "WARD", "WARM",
"WARN", "WART", "WASH", "WAST", "WATS", "WATT", "WAVE", "WAVY", "WAYS",
"WEAK", "WEAL", "WEAN", "WEAR", "WEED", "WEEK", "WEIR", "WELD", "WELL",
"WELT", "WENT", "WERE", "WERT", "WEST", "WHAM", "WHAT", "WHEE", "WHEN",
"WHET", "WHOA", "WHOM", "WICK", "WIFE", "WILD", "WILL", "WIND", "WINE",
"WING", "WINK", "WINO", "WIRE", "WISE", "WISH", "WITH", "WOLF", "WONT",
"WOOD", "WOOL", "WORD", "WORE", "WORK", "WORM", "WORN", "WOVE", "WRIT",
"WYNN", "YALE", "YANG", "YANK", "YARD", "YARN", "YAWL", "YAWN", "YEAH",
"YEAR", "YELL", "YOGA", "YOKE"
};
/* Extract 'length' bits from the char array 's'
starting with bit 'start' */
unsigned long RFC1751::extract (char* s, int start, int length)
{
unsigned char cl;
unsigned char cc;
unsigned char cr;
unsigned long x;
assert (length <= 11);
assert (start >= 0);
assert (length >= 0);
assert (start + length <= 66);
cl = s[start / 8]; // get components
cc = s[start / 8 + 1];
cr = s[start / 8 + 2];
x = ((long) (cl << 8 | cc) << 8 | cr) ; // Put bits together
x = x >> (24 - (length + (start % 8))); // Right justify number
x = ( x & (0xffff >> (16 - length) ) ); // Trim extra bits.
return x;
}
// Encode 8 bytes in 'c' as a string of English words.
// Returns a pointer to a static buffer
void RFC1751::btoe (std::string& strHuman, const std::string& strData)
{
char caBuffer[9]; /* add in room for the parity 2 bits*/
int p, i;
memcpy (caBuffer, strData.c_str (), 8);
// compute parity: merely add groups of two bits.
for (p = 0, i = 0; i < 64; i += 2)
p += extract (caBuffer, i, 2);
caBuffer[8] = char (p) << 6;
strHuman = std::string ()
+ s_dictionary[extract (caBuffer, 0, 11)] + " "
+ s_dictionary[extract (caBuffer, 11, 11)] + " "
+ s_dictionary[extract (caBuffer, 22, 11)] + " "
+ s_dictionary[extract (caBuffer, 33, 11)] + " "
+ s_dictionary[extract (caBuffer, 44, 11)] + " "
+ s_dictionary[extract (caBuffer, 55, 11)];
}
void RFC1751::insert (char* s, int x, int start, int length)
{
unsigned char cl;
unsigned char cc;
unsigned char cr;
unsigned long y;
int shift;
assert (length <= 11);
assert (start >= 0);
assert (length >= 0);
assert (start + length <= 66);
shift = ((8 - (( start + length) % 8)) % 8);
y = (long) x << shift;
cl = (y >> 16) & 0xff;
cc = (y >> 8) & 0xff;
cr = y & 0xff;
if (shift + length > 16)
{
s[start / 8] |= cl;
s[start / 8 + 1] |= cc;
s[start / 8 + 2] |= cr;
}
else if (shift + length > 8)
{
s[start / 8] |= cc;
s[start / 8 + 1] |= cr;
}
else
{
s[start / 8] |= cr;
}
}
void RFC1751::standard (std::string& strWord)
{
BOOST_FOREACH (char cLetter, strWord)
{
if (!isascii (cLetter))
{
; // nothing
}
else if (islower (cLetter))
{
cLetter = toupper (cLetter);
}
else if (cLetter == '1')
{
cLetter = 'L';
}
else if (cLetter == '0')
{
cLetter = 'O';
}
else if (cLetter == '5')
{
cLetter = 'S';
}
}
}
// Binary search of dictionary.
int RFC1751::wsrch (const std::string& strWord, int iMin, int iMax)
{
int iResult = -1;
while (iResult < 0 && iMin != iMax)
{
// Have a range to search.
int iMid = iMin + (iMax - iMin) / 2;
int iDir = strWord.compare (s_dictionary[iMid]);
if (!iDir)
{
iResult = iMid; // Found it.
}
else if (iDir < 0)
{
iMax = iMid; // key < middle, middle is new max.
}
else
{
iMin = iMid + 1; // key > middle, new min is past the middle.
}
}
return iResult;
}
// Convert 6 words to binary.
//
// Returns 1 OK - all good words and parity is OK
// 0 word not in data base
// -1 badly formed in put ie > 4 char word
// -2 words OK but parity is wrong
int RFC1751::etob (std::string& strData, std::vector<std::string> vsHuman)
{
int i, p, v, l;
char b[9];
if (6 != vsHuman.size ())
return -1;
memset (b, 0, sizeof (b));
p = 0;
BOOST_FOREACH (std::string & strWord, vsHuman)
{
l = strWord.length ();
if (l > 4 || l < 1)
return -1;
standard (strWord);
v = wsrch (strWord,
l < 4 ? 0 : 571,
l < 4 ? 570 : 2048);
if (v < 0 )
return 0;
insert (b, v, p, 11);
p += 11;
}
/* now check the parity of what we got */
for (p = 0, i = 0; i < 64; i += 2)
p += extract (b, i, 2);
if ( (p & 3) != extract (b, 64, 2) )
return -2;
strData.assign (b, 8);
return 1;
}
/** Convert words seperated by spaces into a 128 bit key in big-endian format.
@return
1 if succeeded
0 if word not in dictionary
-1 if badly formed string
-2 if words are okay but parity is wrong.
*/
int RFC1751::getKeyFromEnglish (std::string& strKey, const std::string& strHuman)
{
std::vector<std::string> vWords;
std::string strFirst, strSecond;
int rc = 0;
std::string strTrimmed (strHuman);
boost::algorithm::trim (strTrimmed);
boost::algorithm::split (vWords, strTrimmed,
boost::algorithm::is_space (), boost::algorithm::token_compress_on);
rc = 12 == vWords.size () ? 1 : -1;
if (1 == rc)
rc = etob (strFirst, vWords | boost::adaptors::copied (0, 6));
if (1 == rc)
rc = etob (strSecond, vWords | boost::adaptors::copied (6, 12));
if (1 == rc)
strKey = strFirst + strSecond;
return rc;
}
/** Convert to human from a 128 bit key in big-endian format
*/
void RFC1751::getEnglishFromKey (std::string& strHuman, const std::string& strKey)
{
std::string strFirst, strSecond;
btoe (strFirst, strKey.substr (0, 8));
btoe (strSecond, strKey.substr (8, 8));
strHuman = strFirst + " " + strSecond;
}
String RFC1751::getWordFromBlob (void const* data, size_t bytes)
{
uint32 hash;
Murmur::Hash (data, bytes, 0, &hash);
return s_dictionary [hash % (sizeof (s_dictionary) / sizeof (s_dictionary [0]))];
}

View File

@@ -0,0 +1,37 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_RFC1751_H
#define RIPPLE_RFC1751_H
class RFC1751
{
public:
static int getKeyFromEnglish (std::string& strKey, const std::string& strHuman);
static void getEnglishFromKey (std::string& strHuman, const std::string& strKey);
/** Chooses a single dictionary word from the data.
This is not particularly secure but it can be useful to provide
a unique name for something given a GUID or fixed data. We use
it to turn the pubkey_node into an easily remembered and identified
4 character string.
*/
static String getWordFromBlob (void const* data, size_t bytes);
private:
static unsigned long extract (char* s, int start, int length);
static void btoe (std::string& strHuman, const std::string& strData);
static void insert (char* s, int x, int start, int length);
static void standard (std::string& strWord);
static int wsrch (const std::string& strWord, int iMin, int iMax);
static int etob (std::string& strData, std::vector<std::string> vsHuman);
static char const* s_dictionary [];
};
#endif

View File

@@ -0,0 +1,215 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
char const* BuildInfo::getRawVersionString ()
{
static char const* const rawText =
//--------------------------------------------------------------------------
//
// The build version number (edit this for each release)
//
"0.12.1-alpha.1"
//
// Must follow the format described here:
//
// http://semver.org/
//
//--------------------------------------------------------------------------
;
return rawText;
}
BuildInfo::Protocol const& BuildInfo::getCurrentProtocol ()
{
static Protocol currentProtocol (
//--------------------------------------------------------------------------
//
// The protocol version we speak and prefer (edit this if necessary)
//
1, // major
2 // minor
//
//--------------------------------------------------------------------------
);
return currentProtocol;
}
BuildInfo::Protocol const& BuildInfo::getMinimumProtocol ()
{
static Protocol minimumProtocol (
//--------------------------------------------------------------------------
//
// The oldest protocol version we will accept. (edit this if necessary)
//
1, // major
2 // minor
//
//--------------------------------------------------------------------------
);
return minimumProtocol;
}
//
//
// Don't touch anything below this line
//
//------------------------------------------------------------------------------
String const& BuildInfo::getVersionString ()
{
struct SanityChecker
{
SanityChecker ()
{
SemanticVersion v;
char const* const rawText = getRawVersionString ();
if (! v.parse (rawText) || v.print () != rawText)
FatalError ("Bad server version string", __FILE__, __LINE__);
versionString = rawText;
}
String versionString;
};
static SanityChecker value;
return value.versionString;
}
char const* BuildInfo::getFullVersionString ()
{
struct PrettyPrinter
{
PrettyPrinter ()
{
String s;
s << "Ripple-" << getVersionString ();
fullVersionString = s.toStdString ();
}
std::string fullVersionString;
};
static PrettyPrinter value;
return value.fullVersionString.c_str ();
}
//------------------------------------------------------------------------------
BuildInfo::Protocol::Protocol ()
: vmajor (0)
, vminor (0)
{
}
BuildInfo::Protocol::Protocol (unsigned short major_, unsigned short minor_)
: vmajor (major_)
, vminor (minor_)
{
}
BuildInfo::Protocol::Protocol (PackedFormat packedVersion)
{
vmajor = (packedVersion >> 16) & 0xffff;
vminor = (packedVersion & 0xffff);
}
BuildInfo::Protocol::PackedFormat BuildInfo::Protocol::toPacked () const noexcept
{
return ((vmajor << 16) & 0xffff0000) | (vminor & 0xffff);
}
std::string BuildInfo::Protocol::toStdString () const noexcept
{
String s;
s << String (vmajor) << "." << String (vminor);
return s.toStdString ();
}
//------------------------------------------------------------------------------
class BuildInfoTests : public UnitTest
{
public:
BuildInfoTests () : UnitTest ("BuildInfo", "ripple", runStartup)
{
}
void testVersion ()
{
beginTestCase ("version");
SemanticVersion v;
expect (v.parse (BuildInfo::getRawVersionString ()));
}
void checkProtcol (unsigned short vmajor, unsigned short vminor)
{
typedef BuildInfo::Protocol P;
expect (P (P (vmajor, vminor).toPacked ()) == P (vmajor, vminor));
}
void testProtocol ()
{
typedef BuildInfo::Protocol P;
beginTestCase ("protocol");
expect (P (0, 0).toPacked () == 0);
expect (P (0, 1).toPacked () == 1);
expect (P (0, 65535).toPacked () == 65535);
checkProtcol (0, 0);
checkProtcol (0, 1);
checkProtcol (0, 255);
checkProtcol (0, 65535);
checkProtcol (1, 0);
checkProtcol (1, 65535);
checkProtcol (65535, 65535);
}
void testValues ()
{
beginTestCase ("comparison");
typedef BuildInfo::Protocol P;
expect (P(1,2) == P(1,2));
expect (P(3,4) >= P(3,4));
expect (P(5,6) <= P(5,6));
expect (P(7,8) > P(6,7));
expect (P(7,8) < P(8,9));
expect (P(65535,0) < P(65535,65535));
expect (P(65535,65535) >= P(65535,65535));
expect (BuildInfo::getCurrentProtocol () >= BuildInfo::getMinimumProtocol ());
}
void runTest ()
{
testVersion ();
testProtocol ();
testValues ();
}
};
static BuildInfoTests buildInfoTests;

View File

@@ -0,0 +1,73 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_BUILDINFO_H_INCLUDED
#define RIPPLE_BUILDINFO_H_INCLUDED
/** Versioning information for this build. */
struct BuildInfo
{
/** Server version.
Follows the Semantic Versioning Specification:
http://semver.org/
*/
static String const& getVersionString ();
/** Full server version string.
This includes the name of the server. It is used in the peer
protocol hello message and also the headers of some HTTP replies.
*/
static char const* getFullVersionString ();
//--------------------------------------------------------------------------
/** The wire protocol version.
The version consists of two unsigned 16 bit integers representing
major and minor version numbers. All values are permissible.
*/
struct Protocol
{
unsigned short vmajor;
unsigned short vminor;
//----
/** The serialized format of the protocol version. */
typedef uint32 PackedFormat;
Protocol ();
Protocol (unsigned short vmajor, unsigned short vminor);
explicit Protocol (PackedFormat packedVersion);
PackedFormat toPacked () const noexcept;
std::string toStdString () const noexcept;
bool operator== (Protocol const& other) const noexcept { return toPacked () == other.toPacked (); }
bool operator!= (Protocol const& other) const noexcept { return toPacked () != other.toPacked (); }
bool operator>= (Protocol const& other) const noexcept { return toPacked () >= other.toPacked (); }
bool operator<= (Protocol const& other) const noexcept { return toPacked () <= other.toPacked (); }
bool operator> (Protocol const& other) const noexcept { return toPacked () > other.toPacked (); }
bool operator< (Protocol const& other) const noexcept { return toPacked () < other.toPacked (); }
};
/** The protocol version we speak and prefer. */
static Protocol const& getCurrentProtocol ();
/** The oldest protocol version we will accept. */
static Protocol const& getMinimumProtocol ();
private:
friend class BuildInfoTests;
static char const* getRawVersionString ();
};
#endif

View File

@@ -0,0 +1,362 @@
package protocol;
enum MessageType
{
// core
mtHELLO = 1;
mtERROR_MSG = 2;
mtPING = 3;
mtPROOFOFWORK = 4;
mtCLUSTER = 5;
// network presence detection
mtGET_CONTACTS = 10;
mtCONTACT = 11;
mtGET_PEERS = 12;
mtPEERS = 13;
// operations for 'small' nodes
mtSEARCH_TRANSACTION = 20;
mtGET_ACCOUNT = 21;
mtACCOUNT = 22;
// transaction and ledger processing
mtTRANSACTION = 30;
mtGET_LEDGER = 31;
mtLEDGER_DATA = 32;
mtPROPOSE_LEDGER = 33;
mtSTATUS_CHANGE = 34;
mtHAVE_SET = 35;
// data replication and synchronization
mtGET_VALIDATIONS = 40;
mtVALIDATION = 41;
mtGET_OBJECTS = 42;
}
// token, iterations, target, challenge = issue demand for proof of work
// token, response = give solution to proof of work
// token, result = report result of pow
message TMProofWork
{
required string token = 1;
optional uint32 iterations = 2;
optional bytes target = 3;
optional bytes challenge = 4;
optional bytes response = 5;
enum PowResult
{
powrOK = 0;
powrREUSED = 1;
powrEXPIRED = 2; // You took too long solving
powrTOOEASY = 3; // Difficulty went way up, sorry
powrINVALID = 4;
powrDISCONNECT = 5; // We are disconnecting
}
optional PowResult result = 6;
}
// Sent on connect
message TMHello
{
required uint32 protoVersion = 1;
required uint32 protoVersionMin = 2;
required bytes nodePublic = 3;
required bytes nodeProof = 4;
optional string fullVersion = 5;
optional uint64 netTime = 6;
optional uint32 ipv4Port = 7;
optional uint32 ledgerIndex = 8;
optional bytes ledgerClosed = 9; // our last closed ledger
optional bytes ledgerPrevious = 10; // the ledger before the last closed ledger
optional bool nodePrivate = 11; // Request to not forward IP.
optional TMProofWork proofOfWork = 12; // request/provide proof of work
optional bool testNet = 13; // Running as testnet.
}
// The status of a node in our cluster
message TMClusterNode
{
required string publicKey = 1;
required uint32 reportTime = 2;
required uint32 nodeLoad = 3;
optional string nodeName = 4;
optional string address = 5;
}
// The status of all nodes in the cluster
message TMCluster
{
repeated TMClusterNode clusterNodes = 1;
}
// A transaction can have only one input and one output.
// If you want to send an amount that is greater than any single address of yours
// you must first combine coins from one address to another.
enum TransactionStatus
{
tsNEW = 1; // origin node did/could not validate
tsCURRENT = 2; // scheduled to go in this ledger
tsCOMMITED = 3; // in a closed ledger
tsREJECT_CONFLICT = 4;
tsREJECT_INVALID = 5;
tsREJECT_FUNDS = 6;
tsHELD_SEQ = 7;
tsHELD_LEDGER = 8; // held for future ledger
}
message TMTransaction
{
required bytes rawTransaction = 1;
required TransactionStatus status = 2;
optional uint64 receiveTimestamp = 3;
optional bool checkedSignature = 4; // no vouches for signature being correct
}
enum NodeStatus
{
nsCONNECTING = 1; // acquiring connections
nsCONNECTED = 2; // convinced we are connected to the real network
nsMONITORING = 3; // we know what the previous ledger is
nsVALIDATING = 4; // we have the full ledger contents
nsSHUTTING = 5; // node is shutting down
}
enum NodeEvent
{
neCLOSING_LEDGER = 1; // closing a ledger because its close time has come
neACCEPTED_LEDGER = 2; // accepting a closed ledger, we have finished computing it
neSWITCHED_LEDGER = 3; // changing due to network consensus
neLOST_SYNC = 4;
}
message TMStatusChange
{
optional NodeStatus newStatus = 1;
optional NodeEvent newEvent = 2;
optional uint32 ledgerSeq = 3;
optional bytes ledgerHash = 4;
optional bytes ledgerHashPrevious = 5;
optional uint64 networkTime = 6;
optional uint32 firstSeq = 7;
optional uint32 lastSeq = 8;
}
// Announce to the network our position on a closing ledger
message TMProposeSet
{
required uint32 proposeSeq = 1;
required bytes currentTxHash = 2; // the hash of the ledger we are proposing
required bytes nodePubKey = 3;
required uint32 closeTime = 4;
required bytes signature = 5; // signature of above fields
optional bytes previousledger = 6;
optional bool checkedSignature = 7; // node vouches signature is correct
repeated bytes addedTransactions = 10; // not required if number is large
repeated bytes removedTransactions = 11; // not required if number is large
}
enum TxSetStatus
{
tsHAVE = 1; // We have this set locally
tsCAN_GET = 2; // We have a peer with this set
tsNEED = 3; // We need this set and can't get it
}
message TMHaveTransactionSet
{
required TxSetStatus status = 1;
required bytes hash = 2;
}
// Used to sign a final closed ledger after reprocessing
message TMValidation
{
required bytes validation = 1; // in SerializedValidation signed form
optional bool checkedSignature = 2; // node vouches signature is correct
}
message TMGetValidations
{
required uint32 ledgerIndex = 1;
repeated bytes hanko = 2;
optional uint32 count = 3; // get random validations
}
message TMContact
{
required bytes pubKey = 1;
required uint32 softwareVersion = 2;
required uint32 protoVersion = 3;
required uint64 nodeFlags = 4;
required uint64 timestamp = 5;
repeated bytes nodeInfo = 6;
required bytes signature = 7;
}
// request node information
message TMGetContacts
{
repeated bytes nodeIDs = 1; // specific nodes we want
optional uint32 nodeCount = 2; // get some random nodes
}
message TMGetPeers
{
required uint32 doWeNeedThis = 1; // yes since you are asserting that the packet size isn't 0 in PackedMessage
}
message TMIPv4EndPoint
{
required uint32 ipv4 = 1;
required uint32 ipv4Port = 2;
}
message TMPeers
{
repeated TMIPv4EndPoint nodes = 1;
}
message TMSearchTransaction
{
required uint32 maxTrans = 1;
optional bytes toAccount = 2;
optional bytes fromAccount = 3;
optional uint32 minLedger = 4;
optional bytes fromAcctSeq = 5;
repeated bytes transID = 6;
}
message TMGetAccount
{
repeated bytes acctID = 1;
optional uint32 seq = 2;
}
message Account
{
required bytes accountID = 1;
required uint64 balance = 2;
required uint32 accountSeq = 3;
required uint32 ledgerSeq = 4;
}
message TMAccount
{
repeated Account accounts = 1;
optional uint32 seq = 2;
}
message TMIndexedObject
{
optional bytes hash = 1;
optional bytes nodeID = 2;
optional bytes index = 3;
optional bytes data = 4;
optional uint32 ledgerSeq = 5;
}
message TMGetObjectByHash
{
enum ObjectType {
otUNKNOWN = 0;
otLEDGER = 1;
otTRANSACTION = 2;
otTRANSACTION_NODE = 3;
otSTATE_NODE = 4;
otCAS_OBJECT = 5;
otFETCH_PACK = 6;
}
required ObjectType type = 1;
required bool query = 2; // is this a query or a reply?
optional uint32 seq = 3; // used to match replies to queries
optional bytes ledgerHash = 4; // the hash of the ledger these queries are for
optional bool fat = 5; // return related nodes
repeated TMIndexedObject objects = 6; // the specific objects requested
}
message TMLedgerNode
{
required bytes nodedata = 1;
optional bytes nodeid = 2; // missing for ledger base data
}
enum TMLedgerInfoType
{
liBASE = 0; // basic ledger info
liTX_NODE = 1; // transaction node
liAS_NODE = 2; // account state node
liTS_CANDIDATE = 3; // candidate transaction set
}
enum TMLedgerType
{
ltACCEPTED = 0;
ltCURRENT = 1;
ltCLOSED = 2;
}
enum TMQueryType
{
qtINDIRECT = 0;
}
message TMGetLedger
{
required TMLedgerInfoType itype = 1;
optional TMLedgerType ltype = 2;
optional bytes ledgerHash = 3; // Can also be the transaction set hash if liTS_CANDIDATE
optional uint32 ledgerSeq = 4;
repeated bytes nodeIDs = 5;
optional uint64 requestCookie = 6;
optional TMQueryType queryType = 7;
}
enum TMReplyError
{
reNO_LEDGER = 1; // We don't have the ledger you are asking about
reNO_NODE = 2; // We don't have any of the nodes you are asking for
}
message TMLedgerData
{
required bytes ledgerHash = 1;
required uint32 ledgerSeq = 2;
required TMLedgerInfoType type = 3;
repeated TMLedgerNode nodes = 4;
optional uint32 requestCookie = 5;
optional TMReplyError error = 6;
}
message TMPing
{
enum pingType {
ptPING = 0; // we want a reply
ptPONG = 1; // this is a reply
}
required pingType type = 1;
optional uint32 seq = 2; // detect stale replies, ensure other side is reading
optional uint64 pingTime = 3; // know when we think we sent the ping
optional uint64 netTime = 4;
}
message TMErrorMsg
{
optional int32 errorCode = 1;
optional string message = 2;
}

View File

@@ -0,0 +1,144 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// These must stay at the top of this file
std::map<int, SField::ptr> SField::codeToField;
int SField::num = 0;
// Solve construction issues for objects with static storage duration.
SField::StaticLockType& SField::getMutex ()
{
static StaticLockType mutex ("SField", __FILE__, __LINE__);
return mutex;
}
SField sfInvalid (-1), sfGeneric (0);
SField sfLedgerEntry (STI_LEDGERENTRY, 1, "LedgerEntry");
SField sfTransaction (STI_TRANSACTION, 1, "Transaction");
SField sfValidation (STI_VALIDATION, 1, "Validation");
SField sfHash (STI_HASH256, 257, "hash");
SField sfIndex (STI_HASH256, 258, "index");
#define FIELD(name, type, index) SField sf##name(FIELD_CODE(STI_##type, index), STI_##type, index, #name);
#define TYPE(name, type, index)
#include "../protocol/ripple_SerializeDeclarations.h"
#undef FIELD
#undef TYPE
static int initFields ()
{
sfTxnSignature.notSigningField ();
sfTxnSignatures.notSigningField ();
sfSignature.notSigningField ();
sfIndexes.setMeta (SField::sMD_Never);
sfPreviousTxnID.setMeta (SField::sMD_DeleteFinal);
sfPreviousTxnLgrSeq.setMeta (SField::sMD_DeleteFinal);
sfLedgerEntryType.setMeta (SField::sMD_Never);
sfRootIndex.setMeta (SField::sMD_Always);
return 0;
}
static const int f = initFields ();
SField::SField (SerializedTypeID tid, int fv) : fieldCode (FIELD_CODE (tid, fv)), fieldType (tid), fieldValue (fv),
fieldMeta (sMD_Default), fieldNum (++num), signingField (true)
{
// call with the map mutex
fieldName = lexicalCast <std::string> (tid) + "/" + lexicalCast <std::string> (fv);
codeToField[fieldCode] = this;
assert ((fv != 1) || ((tid != STI_ARRAY) && (tid != STI_OBJECT)));
}
SField::ref SField::getField (int code)
{
int type = code >> 16;
int field = code % 0xffff;
if ((type <= 0) || (field <= 0))
return sfInvalid;
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
std::map<int, SField::ptr>::iterator it = codeToField.find (code);
if (it != codeToField.end ())
return * (it->second);
if (field > 255) // don't dynamically extend types that have no binary encoding
return sfInvalid;
switch (type)
{
// types we are willing to dynamically extend
#define FIELD(name, type, index)
#define TYPE(name, type, index) case STI_##type:
#include "../protocol/ripple_SerializeDeclarations.h"
#undef FIELD
#undef TYPE
break;
default:
return sfInvalid;
}
return * (new SField (static_cast<SerializedTypeID> (type), field));
}
int SField::compare (SField::ref f1, SField::ref f2)
{
// -1 = f1 comes before f2, 0 = illegal combination, 1 = f1 comes after f2
if ((f1.fieldCode <= 0) || (f2.fieldCode <= 0))
return 0;
if (f1.fieldCode < f2.fieldCode)
return -1;
if (f2.fieldCode < f1.fieldCode)
return 1;
return 0;
}
std::string SField::getName () const
{
if (!fieldName.empty ())
return fieldName;
if (fieldValue == 0)
return "";
return lexicalCastThrow <std::string> (static_cast<int> (fieldType)) + "/" +
lexicalCastThrow <std::string> (fieldValue);
}
SField::ref SField::getField (const std::string& fieldName)
{
// OPTIMIZEME me with a map. CHECKME this is case sensitive
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
typedef std::map<int, SField::ptr>::value_type int_sfref_pair;
BOOST_FOREACH (const int_sfref_pair & fieldPair, codeToField)
{
if (fieldPair.second->fieldName == fieldName)
return * (fieldPair.second);
}
return sfInvalid;
}
SField::~SField ()
{
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
std::map<int, ptr>::iterator it = codeToField.find (fieldCode);
if ((it != codeToField.end ()) && (it->second == this))
codeToField.erase (it);
}
// vim:ts=4

View File

@@ -0,0 +1,219 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_FIELDNAMES_H
#define RIPPLE_FIELDNAMES_H
// VFALCO TODO lose the macro.
#define FIELD_CODE(type, index) ((static_cast<int>(type) << 16) | index)
enum SerializedTypeID
{
// special types
STI_UNKNOWN = -2,
STI_DONE = -1,
STI_NOTPRESENT = 0,
#define TYPE(name, field, value) STI_##field = value,
#define FIELD(name, field, value)
#include "../protocol/ripple_SerializeDeclarations.h"
#undef TYPE
#undef FIELD
// high level types
STI_TRANSACTION = 10001,
STI_LEDGERENTRY = 10002,
STI_VALIDATION = 10003,
};
/** Identifies fields.
Fields are necessary to tag data in signed transactions so that
the binary format of the transaction can be canonicalized.
*/
// VFALCO TODO rename this to NamedField
class SField
{
public:
typedef const SField& ref;
typedef SField const* ptr;
static const int sMD_Never = 0x00;
static const int sMD_ChangeOrig = 0x01; // original value when it changes
static const int sMD_ChangeNew = 0x02; // new value when it changes
static const int sMD_DeleteFinal = 0x04; // final value when it is deleted
static const int sMD_Create = 0x08; // value when it's created
static const int sMD_Always = 0x10; // value when node containing it is affected at all
static const int sMD_Default = sMD_ChangeOrig | sMD_ChangeNew | sMD_DeleteFinal | sMD_Create;
public:
const int fieldCode; // (type<<16)|index
const SerializedTypeID fieldType; // STI_*
const int fieldValue; // Code number for protocol
std::string fieldName;
int fieldMeta;
int fieldNum;
bool signingField;
SField (int fc, SerializedTypeID tid, int fv, const char* fn)
: fieldCode (fc)
, fieldType (tid)
, fieldValue (fv)
, fieldName (fn)
, fieldMeta (sMD_Default)
, signingField (true)
{
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
codeToField[fieldCode] = this;
fieldNum = ++num;
}
SField (SerializedTypeID tid, int fv, const char* fn)
: fieldCode (FIELD_CODE (tid, fv))
, fieldType (tid)
, fieldValue (fv)
, fieldName (fn)
, fieldMeta (sMD_Default)
, signingField (true)
{
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
codeToField[fieldCode] = this;
fieldNum = ++num;
}
explicit SField (int fc)
: fieldCode (fc)
, fieldType (STI_UNKNOWN)
, fieldValue (0)
, fieldMeta (sMD_Never)
, signingField (true)
{
StaticScopedLockType sl (getMutex (), __FILE__, __LINE__);
fieldNum = ++num;
}
~SField ();
static SField::ref getField (int fieldCode);
static SField::ref getField (const std::string& fieldName);
static SField::ref getField (int type, int value)
{
return getField (FIELD_CODE (type, value));
}
static SField::ref getField (SerializedTypeID type, int value)
{
return getField (FIELD_CODE (type, value));
}
std::string getName () const;
bool hasName () const
{
return !fieldName.empty ();
}
bool isGeneric () const
{
return fieldCode == 0;
}
bool isInvalid () const
{
return fieldCode == -1;
}
bool isUseful () const
{
return fieldCode > 0;
}
bool isKnown () const
{
return fieldType != STI_UNKNOWN;
}
bool isBinary () const
{
return fieldValue < 256;
}
// VFALCO NOTE What is a discardable field?
bool isDiscardable () const
{
return fieldValue > 256;
}
int getCode () const
{
return fieldCode;
}
int getNum () const
{
return fieldNum;
}
static int getNumFields ()
{
return num;
}
bool isSigningField () const
{
return signingField;
}
void notSigningField ()
{
signingField = false;
}
bool shouldMeta (int c) const
{
return (fieldMeta & c) != 0;
}
void setMeta (int c)
{
fieldMeta = c;
}
bool shouldInclude (bool withSigningField) const
{
return (fieldValue < 256) && (withSigningField || signingField);
}
bool operator== (const SField& f) const
{
return fieldCode == f.fieldCode;
}
bool operator!= (const SField& f) const
{
return fieldCode != f.fieldCode;
}
static int compare (SField::ref f1, SField::ref f2);
// VFALCO TODO make these private
protected:
static std::map<int, ptr> codeToField;
typedef RippleMutex StaticLockType;
typedef StaticLockType::ScopedLockType StaticScopedLockType;
static StaticLockType& getMutex ();
// VFALCO NOTE can this be replaced with an atomic int???!
static int num;
SField (SerializedTypeID id, int val);
};
extern SField sfInvalid, sfGeneric, sfLedgerEntry, sfTransaction, sfValidation;
#define FIELD(name, type, index) extern SField sf##name;
#define TYPE(name, type, index)
#include "../protocol/ripple_SerializeDeclarations.h"
#undef FIELD
#undef TYPE
#endif

View File

@@ -0,0 +1,69 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_HASHPREFIX_H
#define RIPPLE_HASHPREFIX_H
/** Prefix for hashing functions.
These prefixes are inserted before the source material used to
generate various hashes. This is done to put each hash in its own
"space." This way, two different types of objects with the
same binary data will produce different hashes.
Each prefix is a 4-byte value with the last byte set to zero
and the first three bytes formed from the ASCII equivalent of
some arbitrary string. For example "TXN".
@note Hash prefixes are part of the Ripple protocol.
@ingroup protocol
*/
// VFALCO NOTE there are ledger entry prefixes too but they are only
// 1 byte, find out why they are different. Maybe we should
// group them all together?
//
struct HashPrefix
{
// VFALCO TODO Make these Doxygen comments and expand the
// description to complete, concise sentences.
//
// transaction plus signature to give transaction ID
static uint32 const transactionID = 0x54584E00; // 'TXN'
// transaction plus metadata
static uint32 const txNode = 0x534E4400; // 'TND'
// account state
static uint32 const leafNode = 0x4D4C4E00; // 'MLN'
// inner node in tree
static uint32 const innerNode = 0x4D494E00; // 'MIN'
// ledger master data for signing
static uint32 const ledgerMaster = 0x4C575200; // 'LGR'
// inner transaction to sign
static uint32 const txSign = 0x53545800; // 'STX'
// validation for signing
static uint32 const validation = 0x56414C00; // 'VAL'
// proposal for signing
static uint32 const proposal = 0x50525000; // 'PRP'
// inner transaction to sign (TESTNET)
static uint32 const txSignTestnet = 0x73747800; // 'stx'
// validation for signing (TESTNET)
static uint32 const validationTestnet = 0x76616C00; // 'val'
// proposal for signing (TESTNET)
static uint32 const proposalTestnet = 0x70727000; // 'prp'
};
#endif

View File

@@ -0,0 +1,172 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_KNOWNFORMATS_H_INCLUDED
#define RIPPLE_KNOWNFORMATS_H_INCLUDED
/** Manages a list of known formats.
Each format has a name, an associated KeyType (typically an enumeration),
and a predefined @ref SOElement.
@tparam KeyType The type of key identifying the format.
*/
template <class KeyType>
class KnownFormats
{
public:
/** A known format.
*/
class Item
{
public:
Item (char const* name, KeyType type)
: m_name (name)
, m_type (type)
{
}
Item& operator<< (SOElement const& el)
{
elements.push_back (el);
return *this;
}
/** Retrieve the name of the format.
*/
std::string const& getName () const noexcept
{
return m_name;
}
/** Retrieve the transaction type this format represents.
*/
KeyType getType () const noexcept
{
return m_type;
}
public:
// VFALCO TODO make an accessor for this
SOTemplate elements;
private:
std::string const m_name;
KeyType const m_type;
};
private:
// VFALCO TODO use String instead of std::string
typedef std::map <std::string, Item*> NameMap;
typedef std::map <KeyType, Item*> TypeMap;
public:
/** Create the known formats object.
Derived classes will load the object will all the known formats.
*/
KnownFormats ()
{
}
/** Destroy the known formats object.
The defined formats are deleted.
*/
~KnownFormats ()
{
}
/** Retrieve the type for a format specified by name.
If the format name is unknown, an exception is thrown.
@param name The name of the type.
@return The type.
*/
KeyType findTypeByName (std::string const name) const
{
Item const* const result = findByName (name);
if (result != nullptr)
{
return result->getType ();
}
else
{
throw std::runtime_error ("Unknown format name");
}
}
/** Retrieve a format based on its type.
*/
// VFALCO TODO Can we just return the SOElement& ?
Item const* findByType (KeyType type) const noexcept
{
Item* result = nullptr;
typename TypeMap::const_iterator const iter = m_types.find (type);
if (iter != m_types.end ())
{
result = iter->second;
}
return result;
}
protected:
/** Retrieve a format based on its name.
*/
Item const* findByName (std::string const& name) const noexcept
{
Item* result = nullptr;
typename NameMap::const_iterator const iter = m_names.find (name);
if (iter != m_names.end ())
{
result = iter->second;
}
return result;
}
/** Add a new format.
The new format has the set of common fields already added.
@param name The name of this format.
@param type The type of this format.
@return The created format.
*/
Item& add (char const* name, KeyType type)
{
Item& item = *m_formats.add (new Item (name, type));
addCommonFields (item);
m_types [item.getType ()] = &item;
m_names [item.getName ()] = &item;
return item;
}
/** Adds common fields.
This is called for every new item.
*/
virtual void addCommonFields (Item& item) = 0;
private:
OwnedArray <Item> m_formats;
NameMap m_names;
TypeMap m_types;
};
#endif

View File

@@ -0,0 +1,120 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
LedgerFormats::LedgerFormats ()
: SharedSingleton <LedgerFormats> (SingletonLifetime::persistAfterCreation)
{
add ("AccountRoot", ltACCOUNT_ROOT)
<< SOElement (sfAccount, SOE_REQUIRED)
<< SOElement (sfSequence, SOE_REQUIRED)
<< SOElement (sfBalance, SOE_REQUIRED)
<< SOElement (sfOwnerCount, SOE_REQUIRED)
<< SOElement (sfPreviousTxnID, SOE_REQUIRED)
<< SOElement (sfPreviousTxnLgrSeq, SOE_REQUIRED)
<< SOElement (sfRegularKey, SOE_OPTIONAL)
<< SOElement (sfEmailHash, SOE_OPTIONAL)
<< SOElement (sfWalletLocator, SOE_OPTIONAL)
<< SOElement (sfWalletSize, SOE_OPTIONAL)
<< SOElement (sfMessageKey, SOE_OPTIONAL)
<< SOElement (sfTransferRate, SOE_OPTIONAL)
<< SOElement (sfDomain, SOE_OPTIONAL)
;
add ("Contract", ltCONTRACT)
<< SOElement (sfAccount, SOE_REQUIRED)
<< SOElement (sfBalance, SOE_REQUIRED)
<< SOElement (sfPreviousTxnID, SOE_REQUIRED)
<< SOElement (sfPreviousTxnLgrSeq, SOE_REQUIRED)
<< SOElement (sfIssuer, SOE_REQUIRED)
<< SOElement (sfOwner, SOE_REQUIRED)
<< SOElement (sfExpiration, SOE_REQUIRED)
<< SOElement (sfBondAmount, SOE_REQUIRED)
<< SOElement (sfCreateCode, SOE_OPTIONAL)
<< SOElement (sfFundCode, SOE_OPTIONAL)
<< SOElement (sfRemoveCode, SOE_OPTIONAL)
<< SOElement (sfExpireCode, SOE_OPTIONAL)
;
add ("DirectoryNode", ltDIR_NODE)
<< SOElement (sfOwner, SOE_OPTIONAL) // for owner directories
<< SOElement (sfTakerPaysCurrency, SOE_OPTIONAL) // for order book directories
<< SOElement (sfTakerPaysIssuer, SOE_OPTIONAL) // for order book directories
<< SOElement (sfTakerGetsCurrency, SOE_OPTIONAL) // for order book directories
<< SOElement (sfTakerGetsIssuer, SOE_OPTIONAL) // for order book directories
<< SOElement (sfExchangeRate, SOE_OPTIONAL) // for order book directories
<< SOElement (sfIndexes, SOE_REQUIRED)
<< SOElement (sfRootIndex, SOE_REQUIRED)
<< SOElement (sfIndexNext, SOE_OPTIONAL)
<< SOElement (sfIndexPrevious, SOE_OPTIONAL)
;
add ("GeneratorMap", ltGENERATOR_MAP)
<< SOElement (sfGenerator, SOE_REQUIRED)
;
add ("Nickname", ltNICKNAME)
<< SOElement (sfAccount, SOE_REQUIRED)
<< SOElement (sfMinimumOffer, SOE_OPTIONAL)
;
add ("Offer", ltOFFER)
<< SOElement (sfAccount, SOE_REQUIRED)
<< SOElement (sfSequence, SOE_REQUIRED)
<< SOElement (sfTakerPays, SOE_REQUIRED)
<< SOElement (sfTakerGets, SOE_REQUIRED)
<< SOElement (sfBookDirectory, SOE_REQUIRED)
<< SOElement (sfBookNode, SOE_REQUIRED)
<< SOElement (sfOwnerNode, SOE_REQUIRED)
<< SOElement (sfPreviousTxnID, SOE_REQUIRED)
<< SOElement (sfPreviousTxnLgrSeq, SOE_REQUIRED)
<< SOElement (sfExpiration, SOE_OPTIONAL)
;
add ("RippleState", ltRIPPLE_STATE)
<< SOElement (sfBalance, SOE_REQUIRED)
<< SOElement (sfLowLimit, SOE_REQUIRED)
<< SOElement (sfHighLimit, SOE_REQUIRED)
<< SOElement (sfPreviousTxnID, SOE_REQUIRED)
<< SOElement (sfPreviousTxnLgrSeq, SOE_REQUIRED)
<< SOElement (sfLowNode, SOE_OPTIONAL)
<< SOElement (sfLowQualityIn, SOE_OPTIONAL)
<< SOElement (sfLowQualityOut, SOE_OPTIONAL)
<< SOElement (sfHighNode, SOE_OPTIONAL)
<< SOElement (sfHighQualityIn, SOE_OPTIONAL)
<< SOElement (sfHighQualityOut, SOE_OPTIONAL)
;
add ("LedgerHashes", ltLEDGER_HASHES)
<< SOElement (sfFirstLedgerSequence, SOE_OPTIONAL) // Remove if we do a ledger restart
<< SOElement (sfLastLedgerSequence, SOE_OPTIONAL)
<< SOElement (sfHashes, SOE_REQUIRED)
;
add ("EnabledFeatures", ltFEATURES)
<< SOElement (sfFeatures, SOE_REQUIRED)
;
add ("FeeSettings", ltFEE_SETTINGS)
<< SOElement (sfBaseFee, SOE_REQUIRED)
<< SOElement (sfReferenceFeeUnits, SOE_REQUIRED)
<< SOElement (sfReserveBase, SOE_REQUIRED)
<< SOElement (sfReserveIncrement, SOE_REQUIRED)
;
}
LedgerFormats* LedgerFormats::createInstance ()
{
return new LedgerFormats;
}
void LedgerFormats::addCommonFields (Item& item)
{
item
<< SOElement(sfLedgerIndex, SOE_OPTIONAL)
<< SOElement(sfLedgerEntryType, SOE_REQUIRED)
<< SOElement(sfFlags, SOE_REQUIRED)
;
}

View File

@@ -0,0 +1,121 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_LEDGERFORMATS_H_INCLUDED
#define RIPPLE_LEDGERFORMATS_H_INCLUDED
/** Ledger entry types.
These are stored in serialized data.
@note Changing these values results in a hard fork.
@ingroup protocol
*/
// Used as the type of a transaction or the type of a ledger entry.
enum LedgerEntryType
{
ltINVALID = -1,
ltACCOUNT_ROOT = 'a',
/** Directory node.
A directory is a vector 256-bit values. Usually they represent
hashes of other objects in the ledger.
Used in an append-only fashion.
(There's a little more information than this, see the template)
*/
ltDIR_NODE = 'd',
ltGENERATOR_MAP = 'g',
/** Describes a trust line.
*/
// VFALCO TODO Rename to TrustLine or something similar.
ltRIPPLE_STATE = 'r',
/** Deprecated.
*/
ltNICKNAME = 'n',
ltOFFER = 'o',
ltCONTRACT = 'c',
ltLEDGER_HASHES = 'h',
ltFEATURES = 'f',
ltFEE_SETTINGS = 's',
};
/**
@ingroup protocol
*/
// Used as a prefix for computing ledger indexes (keys).
// VFALCO TODO Why are there a separate set of prefixes? i.e. class HashPrefix
enum LedgerNameSpace
{
spaceAccount = 'a',
spaceDirNode = 'd',
spaceGenerator = 'g',
spaceNickname = 'n',
spaceRipple = 'r',
spaceOffer = 'o', // Entry for an offer.
spaceOwnerDir = 'O', // Directory of things owned by an account.
spaceBookDir = 'B', // Directory of order books.
spaceContract = 'c',
spaceSkipList = 's',
spaceFeature = 'f',
spaceFee = 'e',
};
/**
@ingroup protocol
*/
enum LedgerSpecificFlags
{
// ltACCOUNT_ROOT
lsfPasswordSpent = 0x00010000, // True, if password set fee is spent.
lsfRequireDestTag = 0x00020000, // True, to require a DestinationTag for payments.
lsfRequireAuth = 0x00040000, // True, to require a authorization to hold IOUs.
lsfDisallowXRP = 0x00080000, // True, to disallow sending XRP.
lsfDisableMaster = 0x00100000, // True, force regular key
// ltOFFER
lsfPassive = 0x00010000,
lsfSell = 0x00020000, // True, offer was placed as a sell.
// ltRIPPLE_STATE
lsfLowReserve = 0x00010000, // True, if entry counts toward reserve.
lsfHighReserve = 0x00020000,
lsfLowAuth = 0x00040000,
lsfHighAuth = 0x00080000,
};
//------------------------------------------------------------------------------
/** Holds the list of known ledger entry formats.
*/
class LedgerFormats
: public KnownFormats <LedgerEntryType>
, public SharedSingleton <LedgerFormats>
{
private:
LedgerFormats ();
public:
static LedgerFormats* createInstance ();
private:
void addCommonFields (Item& item);
};
#endif

View File

@@ -0,0 +1,74 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
PackedMessage::PackedMessage (::google::protobuf::Message const& message, int type)
{
unsigned const messageBytes = message.ByteSize ();
assert (messageBytes != 0);
mBuffer.resize (kHeaderBytes + messageBytes);
encodeHeader (messageBytes, type);
if (messageBytes != 0)
{
message.SerializeToArray (&mBuffer [PackedMessage::kHeaderBytes], messageBytes);
#ifdef BEAST_DEBUG
//Log::out() << "PackedMessage: type=" << type << ", datalen=" << msg_size;
#endif
}
}
bool PackedMessage::operator== (PackedMessage const& other) const
{
return mBuffer == other.mBuffer;
}
unsigned PackedMessage::getLength (std::vector <uint8_t> const& buf)
{
unsigned result;
if (buf.size () >= PackedMessage::kHeaderBytes)
{
result = buf [0];
result <<= 8;
result |= buf [1];
result <<= 8;
result |= buf [2];
result <<= 8;
result |= buf [3];
}
else
{
result = 0;
}
return result;
}
int PackedMessage::getType (std::vector<uint8_t> const& buf)
{
if (buf.size () < PackedMessage::kHeaderBytes)
return 0;
int ret = buf[4];
ret <<= 8;
ret |= buf[5];
return ret;
}
void PackedMessage::encodeHeader (unsigned size, int type)
{
assert (mBuffer.size () >= PackedMessage::kHeaderBytes);
mBuffer[0] = static_cast<boost::uint8_t> ((size >> 24) & 0xFF);
mBuffer[1] = static_cast<boost::uint8_t> ((size >> 16) & 0xFF);
mBuffer[2] = static_cast<boost::uint8_t> ((size >> 8) & 0xFF);
mBuffer[3] = static_cast<boost::uint8_t> (size & 0xFF);
mBuffer[4] = static_cast<boost::uint8_t> ((type >> 8) & 0xFF);
mBuffer[5] = static_cast<boost::uint8_t> (type & 0xFF);
}

View File

@@ -0,0 +1,60 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
//
// packaging of messages into length/type-prepended buffers
// ready for transmission.
#ifndef RIPPLE_PACKEDMESSAGE_H
#define RIPPLE_PACKEDMESSAGE_H
// PackedMessage implements simple "packing" of protocol buffers Messages into
// a string prepended by a header specifying the message length.
// MessageType should be a Message class generated by the protobuf compiler.
//
class PackedMessage : public boost::enable_shared_from_this <PackedMessage>
{
public:
typedef boost::shared_ptr< ::google::protobuf::Message > MessagePointer;
typedef boost::shared_ptr<PackedMessage> pointer;
public:
/** Number of bytes in a message header.
*/
static unsigned const kHeaderBytes = 6;
PackedMessage (::google::protobuf::Message const& message, int type);
/** Retrieve the packed message data.
*/
// VFALCO TODO shouldn't this be const?
std::vector <uint8_t>& getBuffer ()
{
return mBuffer;
}
/** Determine bytewise equality.
*/
bool operator == (PackedMessage const& other) const;
/** Calculate the length of a packed message.
*/
static unsigned getLength (std::vector <uint8_t> const& buf);
/** Determine the type of a packed message.
*/
static int getType (std::vector <uint8_t> const& buf);
private:
// Encodes the size and type into a header at the beginning of buf
//
void encodeHeader (unsigned size, int type);
std::vector <uint8_t> mBuffer;
};
#endif /* PACKEDMESSAGE_H */

View File

@@ -0,0 +1,72 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_H
#define RIPPLE_PROTOCOL_H
/** Protocol specific constants, types, and data.
This information is part of the Ripple protocol. Specifically,
it is required for peers to be able to communicate with each other.
@note Changing these will create a hard fork.
@ingroup protocol
@defgroup protocol
*/
struct Protocol
{
/** Smallest legal byte size of a transaction.
*/
static int const txMinSizeBytes = 32;
/** Largest legal byte size of a transaction.
*/
static int const txMaxSizeBytes = 1024 * 1024; // 1048576
};
/*
Hashes are used to uniquely identify objects like
transactions, peers, validators, and accounts.
For historical reasons, some hashes are 256 bits and some are 160.
David:
"The theory is that you may need to communicate public keys
to others, so having them be shorter is a good idea. plus,
you can't arbitrarily tweak them because you wouldn't know
the corresponding private key anyway. So the security
requirements aren't as great."
*/
/** A ledger hash.
*/
typedef uint256 LedgerHash;
/** A ledger index.
*/
// VFALCO TODO pick one. I like Index since its not an abbreviation
typedef uint32 LedgerIndex;
// VFALCO NOTE "LedgerSeq" appears in some SQL statement text
typedef uint32 LedgerSeq;
/** A transaction identifier.
*/
// VFALCO TODO maybe rename to TxHash
typedef uint256 TxID;
/** A transaction index.
*/
typedef uint32 TxSeq; // VFALCO NOTE Should read TxIndex or TxNum
/** An account hash.
The hash is used to uniquely identify the account.
*/
//typedef uint160 AccountHash;
//typedef uint260 ValidatorID;
#endif

View File

@@ -0,0 +1,946 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
SETUP_LOG (RippleAddress)
RippleAddress::RippleAddress ()
: mIsValid (false)
{
nVersion = VER_NONE;
}
void RippleAddress::clear ()
{
nVersion = VER_NONE;
vchData.clear ();
}
bool RippleAddress::isSet () const
{
return nVersion != VER_NONE;
}
std::string RippleAddress::humanAddressType () const
{
switch (nVersion)
{
case VER_NONE:
return "VER_NONE";
case VER_NODE_PUBLIC:
return "VER_NODE_PUBLIC";
case VER_NODE_PRIVATE:
return "VER_NODE_PRIVATE";
case VER_ACCOUNT_ID:
return "VER_ACCOUNT_ID";
case VER_ACCOUNT_PUBLIC:
return "VER_ACCOUNT_PUBLIC";
case VER_ACCOUNT_PRIVATE:
return "VER_ACCOUNT_PRIVATE";
case VER_FAMILY_GENERATOR:
return "VER_FAMILY_GENERATOR";
case VER_FAMILY_SEED:
return "VER_FAMILY_SEED";
}
return "unknown";
}
//
// NodePublic
//
RippleAddress RippleAddress::createNodePublic (const RippleAddress& naSeed)
{
CKey ckSeed (naSeed.getSeed ());
RippleAddress naNew;
// YYY Should there be a GetPubKey() equiv that returns a uint256?
naNew.setNodePublic (ckSeed.GetPubKey ());
return naNew;
}
RippleAddress RippleAddress::createNodePublic (Blob const& vPublic)
{
RippleAddress naNew;
naNew.setNodePublic (vPublic);
return naNew;
}
RippleAddress RippleAddress::createNodePublic (const std::string& strPublic)
{
RippleAddress naNew;
naNew.setNodePublic (strPublic);
return naNew;
}
uint160 RippleAddress::getNodeID () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getNodeID");
case VER_NODE_PUBLIC:
// Note, we are encoding the left.
return Hash160 (vchData);
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
Blob const& RippleAddress::getNodePublic () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getNodePublic");
case VER_NODE_PUBLIC:
return vchData;
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanNodePublic () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanNodePublic");
case VER_NODE_PUBLIC:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setNodePublic (const std::string& strPublic)
{
mIsValid = SetString (strPublic.c_str (), VER_NODE_PUBLIC);
return mIsValid;
}
void RippleAddress::setNodePublic (Blob const& vPublic)
{
mIsValid = true;
SetData (VER_NODE_PUBLIC, vPublic);
}
bool RippleAddress::verifyNodePublic (uint256 const& hash, Blob const& vchSig) const
{
CKey pubkey = CKey ();
bool bVerified;
if (!pubkey.SetPubKey (getNodePublic ()))
{
// Failed to set public key.
bVerified = false;
}
else
{
bVerified = pubkey.Verify (hash, vchSig);
}
return bVerified;
}
bool RippleAddress::verifyNodePublic (uint256 const& hash, const std::string& strSig) const
{
Blob vchSig (strSig.begin (), strSig.end ());
return verifyNodePublic (hash, vchSig);
}
//
// NodePrivate
//
RippleAddress RippleAddress::createNodePrivate (const RippleAddress& naSeed)
{
uint256 uPrivKey;
RippleAddress naNew;
CKey ckSeed (naSeed.getSeed ());
ckSeed.GetPrivateKeyU (uPrivKey);
naNew.setNodePrivate (uPrivKey);
return naNew;
}
Blob const& RippleAddress::getNodePrivateData () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getNodePrivateData");
case VER_NODE_PRIVATE:
return vchData;
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
uint256 RippleAddress::getNodePrivate () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source = getNodePrivate");
case VER_NODE_PRIVATE:
return uint256 (vchData);
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanNodePrivate () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanNodePrivate");
case VER_NODE_PRIVATE:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setNodePrivate (const std::string& strPrivate)
{
mIsValid = SetString (strPrivate.c_str (), VER_NODE_PRIVATE);
return mIsValid;
}
void RippleAddress::setNodePrivate (Blob const& vPrivate)
{
mIsValid = true;
SetData (VER_NODE_PRIVATE, vPrivate);
}
void RippleAddress::setNodePrivate (uint256 hash256)
{
mIsValid = true;
SetData (VER_NODE_PRIVATE, hash256.begin (), 32);
}
void RippleAddress::signNodePrivate (uint256 const& hash, Blob& vchSig) const
{
CKey ckPrivKey;
ckPrivKey.SetPrivateKeyU (getNodePrivate ());
if (!ckPrivKey.Sign (hash, vchSig))
throw std::runtime_error ("Signing failed.");
}
//
// AccountID
//
uint160 RippleAddress::getAccountID () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getAccountID");
case VER_ACCOUNT_ID:
return uint160 (vchData);
case VER_ACCOUNT_PUBLIC:
// Note, we are encoding the left.
return Hash160 (vchData);
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
typedef RippleMutex StaticLockType;
typedef StaticLockType::ScopedLockType StaticScopedLockType;
static StaticLockType s_lock ("RippleAddress", __FILE__, __LINE__);
static boost::unordered_map< Blob , std::string > rncMap;
std::string RippleAddress::humanAccountID () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanAccountID");
case VER_ACCOUNT_ID:
{
StaticScopedLockType sl (s_lock, __FILE__, __LINE__);
boost::unordered_map< Blob , std::string >::iterator it = rncMap.find (vchData);
if (it != rncMap.end ())
return it->second;
if (rncMap.size () > 10000)
rncMap.clear ();
return rncMap[vchData] = ToString ();
}
case VER_ACCOUNT_PUBLIC:
{
RippleAddress accountID;
(void) accountID.setAccountID (getAccountID ());
return accountID.ToString ();
}
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setAccountID (const std::string& strAccountID, const char* pAlphabet)
{
if (strAccountID.empty ())
{
setAccountID (uint160 ());
mIsValid = true;
}
else
{
mIsValid = SetString (strAccountID.c_str (), VER_ACCOUNT_ID, pAlphabet);
}
return mIsValid;
}
void RippleAddress::setAccountID (const uint160& hash160)
{
mIsValid = true;
SetData (VER_ACCOUNT_ID, hash160.begin (), 20);
}
//
// AccountPublic
//
RippleAddress RippleAddress::createAccountPublic (const RippleAddress& naGenerator, int iSeq)
{
CKey ckPub (naGenerator, iSeq);
RippleAddress naNew;
naNew.setAccountPublic (ckPub.GetPubKey ());
return naNew;
}
Blob const& RippleAddress::getAccountPublic () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getAccountPublic");
case VER_ACCOUNT_ID:
throw std::runtime_error ("public not available from account id");
break;
case VER_ACCOUNT_PUBLIC:
return vchData;
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanAccountPublic () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanAccountPublic");
case VER_ACCOUNT_ID:
throw std::runtime_error ("public not available from account id");
case VER_ACCOUNT_PUBLIC:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setAccountPublic (const std::string& strPublic)
{
mIsValid = SetString (strPublic.c_str (), VER_ACCOUNT_PUBLIC);
return mIsValid;
}
void RippleAddress::setAccountPublic (Blob const& vPublic)
{
mIsValid = true;
SetData (VER_ACCOUNT_PUBLIC, vPublic);
}
void RippleAddress::setAccountPublic (const RippleAddress& generator, int seq)
{
CKey pubkey = CKey (generator, seq);
setAccountPublic (pubkey.GetPubKey ());
}
bool RippleAddress::accountPublicVerify (uint256 const& uHash, Blob const& vucSig) const
{
CKey ckPublic;
bool bVerified;
if (!ckPublic.SetPubKey (getAccountPublic ()))
{
// Bad private key.
WriteLog (lsWARNING, RippleAddress) << "accountPublicVerify: Bad private key.";
bVerified = false;
}
else
{
bVerified = ckPublic.Verify (uHash, vucSig);
}
return bVerified;
}
RippleAddress RippleAddress::createAccountID (const uint160& uiAccountID)
{
RippleAddress na;
na.setAccountID (uiAccountID);
return na;
}
//
// AccountPrivate
//
RippleAddress RippleAddress::createAccountPrivate (const RippleAddress& naGenerator, const RippleAddress& naSeed, int iSeq)
{
RippleAddress naNew;
naNew.setAccountPrivate (naGenerator, naSeed, iSeq);
return naNew;
}
uint256 RippleAddress::getAccountPrivate () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getAccountPrivate");
case VER_ACCOUNT_PRIVATE:
return uint256 (vchData);
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanAccountPrivate () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanAccountPrivate");
case VER_ACCOUNT_PRIVATE:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setAccountPrivate (const std::string& strPrivate)
{
mIsValid = SetString (strPrivate.c_str (), VER_ACCOUNT_PRIVATE);
return mIsValid;
}
void RippleAddress::setAccountPrivate (Blob const& vPrivate)
{
mIsValid = true;
SetData (VER_ACCOUNT_PRIVATE, vPrivate);
}
void RippleAddress::setAccountPrivate (uint256 hash256)
{
mIsValid = true;
SetData (VER_ACCOUNT_PRIVATE, hash256.begin (), 32);
}
void RippleAddress::setAccountPrivate (const RippleAddress& naGenerator, const RippleAddress& naSeed, int seq)
{
CKey ckPubkey = CKey (naSeed.getSeed ());
CKey ckPrivkey = CKey (naGenerator, ckPubkey.GetSecretBN (), seq);
uint256 uPrivKey;
ckPrivkey.GetPrivateKeyU (uPrivKey);
setAccountPrivate (uPrivKey);
}
bool RippleAddress::accountPrivateSign (uint256 const& uHash, Blob& vucSig) const
{
CKey ckPrivate;
bool bResult;
if (!ckPrivate.SetPrivateKeyU (getAccountPrivate ()))
{
// Bad private key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateSign: Bad private key.";
bResult = false;
}
else
{
bResult = ckPrivate.Sign (uHash, vucSig);
CondLog (!bResult, lsWARNING, RippleAddress) << "accountPrivateSign: Signing failed.";
}
return bResult;
}
#if 0
bool RippleAddress::accountPrivateVerify (uint256 const& uHash, Blob const& vucSig) const
{
CKey ckPrivate;
bool bVerified;
if (!ckPrivate.SetPrivateKeyU (getAccountPrivate ()))
{
// Bad private key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateVerify: Bad private key.";
bVerified = false;
}
else
{
bVerified = ckPrivate.Verify (uHash, vucSig);
}
return bVerified;
}
#endif
Blob RippleAddress::accountPrivateEncrypt (const RippleAddress& naPublicTo, Blob const& vucPlainText) const
{
CKey ckPrivate;
CKey ckPublic;
Blob vucCipherText;
if (!ckPublic.SetPubKey (naPublicTo.getAccountPublic ()))
{
// Bad public key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateEncrypt: Bad public key.";
}
else if (!ckPrivate.SetPrivateKeyU (getAccountPrivate ()))
{
// Bad private key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateEncrypt: Bad private key.";
}
else
{
try
{
vucCipherText = ckPrivate.encryptECIES (ckPublic, vucPlainText);
}
catch (...)
{
nothing ();
}
}
return vucCipherText;
}
Blob RippleAddress::accountPrivateDecrypt (const RippleAddress& naPublicFrom, Blob const& vucCipherText) const
{
CKey ckPrivate;
CKey ckPublic;
Blob vucPlainText;
if (!ckPublic.SetPubKey (naPublicFrom.getAccountPublic ()))
{
// Bad public key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateDecrypt: Bad public key.";
}
else if (!ckPrivate.SetPrivateKeyU (getAccountPrivate ()))
{
// Bad private key.
WriteLog (lsWARNING, RippleAddress) << "accountPrivateDecrypt: Bad private key.";
}
else
{
try
{
vucPlainText = ckPrivate.decryptECIES (ckPublic, vucCipherText);
}
catch (...)
{
nothing ();
}
}
return vucPlainText;
}
//
// Generators
//
BIGNUM* RippleAddress::getGeneratorBN () const
{
// returns the public generator
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getGeneratorBN");
case VER_FAMILY_GENERATOR:
// Do nothing.
break;
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
BIGNUM* ret = BN_bin2bn (&vchData[0], vchData.size (), NULL);
assert (ret);
return ret;
}
Blob const& RippleAddress::getGenerator () const
{
// returns the public generator
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getGenerator");
case VER_FAMILY_GENERATOR:
// Do nothing.
return vchData;
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanGenerator () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanGenerator");
case VER_FAMILY_GENERATOR:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
bool RippleAddress::setGenerator (const std::string& strGenerator)
{
mIsValid = SetString (strGenerator.c_str (), VER_FAMILY_GENERATOR);
return mIsValid;
}
void RippleAddress::setGenerator (Blob const& vPublic)
{
mIsValid = true;
SetData (VER_FAMILY_GENERATOR, vPublic);
}
RippleAddress RippleAddress::createGeneratorPublic (const RippleAddress& naSeed)
{
CKey ckSeed (naSeed.getSeed ());
RippleAddress naNew;
naNew.setGenerator (ckSeed.GetPubKey ());
return naNew;
}
//
// Seed
//
uint128 RippleAddress::getSeed () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - getSeed");
case VER_FAMILY_SEED:
return uint128 (vchData);
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanSeed1751 () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanSeed1751");
case VER_FAMILY_SEED:
{
std::string strHuman;
std::string strLittle;
std::string strBig;
uint128 uSeed = getSeed ();
strLittle.assign (uSeed.begin (), uSeed.end ());
strBig.assign (strLittle.rbegin (), strLittle.rend ());
RFC1751::getEnglishFromKey (strHuman, strBig);
return strHuman;
}
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
std::string RippleAddress::humanSeed () const
{
switch (nVersion)
{
case VER_NONE:
throw std::runtime_error ("unset source - humanSeed");
case VER_FAMILY_SEED:
return ToString ();
default:
throw std::runtime_error (str (boost::format ("bad source: %d") % int (nVersion)));
}
}
int RippleAddress::setSeed1751 (const std::string& strHuman1751)
{
std::string strKey;
int iResult = RFC1751::getKeyFromEnglish (strKey, strHuman1751);
if (1 == iResult)
{
Blob vchLittle (strKey.rbegin (), strKey.rend ());
uint128 uSeed (vchLittle);
setSeed (uSeed);
}
return iResult;
}
bool RippleAddress::setSeed (const std::string& strSeed)
{
mIsValid = SetString (strSeed.c_str (), VER_FAMILY_SEED);
return mIsValid;
}
bool RippleAddress::setSeedGeneric (const std::string& strText)
{
RippleAddress naTemp;
bool bResult = true;
uint128 uSeed;
if (strText.empty ()
|| naTemp.setAccountID (strText)
|| naTemp.setAccountPublic (strText)
|| naTemp.setAccountPrivate (strText)
|| naTemp.setNodePublic (strText)
|| naTemp.setNodePrivate (strText))
{
bResult = false;
}
else if (strText.length () == 32 && uSeed.SetHex (strText, true))
{
setSeed (uSeed);
}
else if (setSeed (strText))
{
// Log::out() << "Recognized seed.";
nothing ();
}
else if (1 == setSeed1751 (strText))
{
// Log::out() << "Recognized 1751 seed.";
nothing ();
}
else
{
// Log::out() << "Creating seed from pass phrase.";
setSeed (CKey::PassPhraseToKey (strText));
}
return bResult;
}
void RippleAddress::setSeed (uint128 hash128)
{
mIsValid = true;
SetData (VER_FAMILY_SEED, hash128.begin (), 16);
}
void RippleAddress::setSeedRandom ()
{
// XXX Maybe we should call MakeNewKey
uint128 key;
RandomNumbers::getInstance ().fillBytes (key.begin (), key.size ());
RippleAddress::setSeed (key);
}
RippleAddress RippleAddress::createSeedRandom ()
{
RippleAddress naNew;
naNew.setSeedRandom ();
return naNew;
}
RippleAddress RippleAddress::createSeedGeneric (const std::string& strText)
{
RippleAddress naNew;
naNew.setSeedGeneric (strText);
return naNew;
}
//------------------------------------------------------------------------------
class RippleAddressTests : public UnitTest
{
public:
RippleAddressTests () : UnitTest ("RippleAddress", "ripple")
{
}
void runTest ()
{
beginTestCase ("public/private");
// Construct a seed.
RippleAddress naSeed;
expect (naSeed.setSeedGeneric ("masterpassphrase"));
expect (naSeed.humanSeed () == "snoPBrXtMeMyMHUVTgbuqAfg1SUTb", naSeed.humanSeed ());
// Create node public/private key pair
RippleAddress naNodePublic = RippleAddress::createNodePublic (naSeed);
RippleAddress naNodePrivate = RippleAddress::createNodePrivate (naSeed);
expect (naNodePublic.humanNodePublic () == "n94a1u4jAz288pZLtw6yFWVbi89YamiC6JBXPVUj5zmExe5fTVg9", naNodePublic.humanNodePublic ());
expect (naNodePrivate.humanNodePrivate () == "pnen77YEeUd4fFKG7iycBWcwKpTaeFRkW2WFostaATy1DSupwXe", naNodePrivate.humanNodePrivate ());
// Check node signing.
Blob vucTextSrc = strCopy ("Hello, nurse!");
uint256 uHash = Serializer::getSHA512Half (vucTextSrc);
Blob vucTextSig;
naNodePrivate.signNodePrivate (uHash, vucTextSig);
expect (naNodePublic.verifyNodePublic (uHash, vucTextSig), "Verify failed.");
// Construct a public generator from the seed.
RippleAddress naGenerator = RippleAddress::createGeneratorPublic (naSeed);
expect (naGenerator.humanGenerator () == "fhuJKrhSDzV2SkjLn9qbwm5AaRmrxDPfFsHDCP6yfDZWcxDFz4mt", naGenerator.humanGenerator ());
// Create account #0 public/private key pair.
RippleAddress naAccountPublic0 = RippleAddress::createAccountPublic (naGenerator, 0);
RippleAddress naAccountPrivate0 = RippleAddress::createAccountPrivate (naGenerator, naSeed, 0);
expect (naAccountPublic0.humanAccountID () == "rHb9CJAWyB4rj91VRWn96DkukG4bwdtyTh", naAccountPublic0.humanAccountID ());
expect (naAccountPublic0.humanAccountPublic () == "aBQG8RQAzjs1eTKFEAQXr2gS4utcDiEC9wmi7pfUPTi27VCahwgw", naAccountPublic0.humanAccountPublic ());
expect (naAccountPrivate0.humanAccountPrivate () == "p9JfM6HHi64m6mvB6v5k7G2b1cXzGmYiCNJf6GHPKvFTWdeRVjh", naAccountPrivate0.humanAccountPrivate ());
// Create account #1 public/private key pair.
RippleAddress naAccountPublic1 = RippleAddress::createAccountPublic (naGenerator, 1);
RippleAddress naAccountPrivate1 = RippleAddress::createAccountPrivate (naGenerator, naSeed, 1);
expect (naAccountPublic1.humanAccountID () == "r4bYF7SLUMD7QgSLLpgJx38WJSY12ViRjP", naAccountPublic1.humanAccountID ());
expect (naAccountPublic1.humanAccountPublic () == "aBPXpTfuLy1Bhk3HnGTTAqnovpKWQ23NpFMNkAF6F1Atg5vDyPrw", naAccountPublic1.humanAccountPublic ());
expect (naAccountPrivate1.humanAccountPrivate () == "p9JEm822LMrzJii1k7TvdphfENTp6G5jr253Xa5rkzUWVr8ogQt", naAccountPrivate1.humanAccountPrivate ());
// Check account signing.
expect (naAccountPrivate0.accountPrivateSign (uHash, vucTextSig), "Signing failed.");
expect (naAccountPublic0.accountPublicVerify (uHash, vucTextSig), "Verify failed.");
expect (!naAccountPublic1.accountPublicVerify (uHash, vucTextSig), "Anti-verify failed.");
expect (naAccountPrivate1.accountPrivateSign (uHash, vucTextSig), "Signing failed.");
expect (naAccountPublic1.accountPublicVerify (uHash, vucTextSig), "Verify failed.");
expect (!naAccountPublic0.accountPublicVerify (uHash, vucTextSig), "Anti-verify failed.");
// Check account encryption.
Blob vucTextCipher
= naAccountPrivate0.accountPrivateEncrypt (naAccountPublic1, vucTextSrc);
Blob vucTextRecovered
= naAccountPrivate1.accountPrivateDecrypt (naAccountPublic0, vucTextCipher);
expect (vucTextSrc == vucTextRecovered, "Encrypt-decrypt failed.");
}
};
static RippleAddressTests rippleAddressTests;

View File

@@ -0,0 +1,208 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_RIPPLEADDRESS_H
#define RIPPLE_RIPPLEADDRESS_H
//
// Used to hold addresses and parse and produce human formats.
//
// XXX This needs to be reworked to store data in uint160 and uint256. Conversion to CBase58Data should happen as needed.
class RippleAddress : public CBase58Data
{
private:
typedef enum
{
VER_NONE = 1,
VER_NODE_PUBLIC = 28,
VER_NODE_PRIVATE = 32,
VER_ACCOUNT_ID = 0,
VER_ACCOUNT_PUBLIC = 35,
VER_ACCOUNT_PRIVATE = 34,
VER_FAMILY_GENERATOR = 41,
VER_FAMILY_SEED = 33,
} VersionEncoding;
bool mIsValid;
public:
RippleAddress ();
// For public and private key, checks if they are legal.
bool isValid () const
{
return mIsValid;
}
void clear ();
bool isSet () const;
std::string humanAddressType () const;
//
// Node Public - Also used for Validators
//
uint160 getNodeID () const;
Blob const& getNodePublic () const;
std::string humanNodePublic () const;
bool setNodePublic (const std::string& strPublic);
void setNodePublic (Blob const& vPublic);
bool verifyNodePublic (uint256 const& hash, Blob const& vchSig) const;
bool verifyNodePublic (uint256 const& hash, const std::string& strSig) const;
static RippleAddress createNodePublic (const RippleAddress& naSeed);
static RippleAddress createNodePublic (Blob const& vPublic);
static RippleAddress createNodePublic (const std::string& strPublic);
//
// Node Private
//
Blob const& getNodePrivateData () const;
uint256 getNodePrivate () const;
std::string humanNodePrivate () const;
bool setNodePrivate (const std::string& strPrivate);
void setNodePrivate (Blob const& vPrivate);
void setNodePrivate (uint256 hash256);
void signNodePrivate (uint256 const& hash, Blob& vchSig) const;
static RippleAddress createNodePrivate (const RippleAddress& naSeed);
//
// Accounts IDs
//
uint160 getAccountID () const;
std::string humanAccountID () const;
bool setAccountID (const std::string& strAccountID, const char* pAlphabet = Base58::getCurrentAlphabet ());
void setAccountID (const uint160& hash160In);
static RippleAddress createAccountID (const std::string& strAccountID)
{
RippleAddress na;
na.setAccountID (strAccountID);
return na;
}
static RippleAddress createAccountID (const uint160& uiAccountID);
static std::string createHumanAccountID (const uint160& uiAccountID)
{
return createAccountID (uiAccountID).humanAccountID ();
}
static std::string createHumanAccountID (Blob const& vPrivate)
{
return createAccountPrivate (vPrivate).humanAccountID ();
}
//
// Accounts Public
//
Blob const& getAccountPublic () const;
std::string humanAccountPublic () const;
bool setAccountPublic (const std::string& strPublic);
void setAccountPublic (Blob const& vPublic);
void setAccountPublic (const RippleAddress& generator, int seq);
bool accountPublicVerify (uint256 const& uHash, Blob const& vucSig) const;
static RippleAddress createAccountPublic (Blob const& vPublic)
{
RippleAddress naNew;
naNew.setAccountPublic (vPublic);
return naNew;
}
static std::string createHumanAccountPublic (Blob const& vPublic)
{
return createAccountPublic (vPublic).humanAccountPublic ();
}
// Create a deterministic public key from a public generator.
static RippleAddress createAccountPublic (const RippleAddress& naGenerator, int iSeq);
//
// Accounts Private
//
uint256 getAccountPrivate () const;
std::string humanAccountPrivate () const;
bool setAccountPrivate (const std::string& strPrivate);
void setAccountPrivate (Blob const& vPrivate);
void setAccountPrivate (uint256 hash256);
void setAccountPrivate (const RippleAddress& naGenerator, const RippleAddress& naSeed, int seq);
bool accountPrivateSign (uint256 const& uHash, Blob& vucSig) const;
// bool accountPrivateVerify(uint256 const& uHash, Blob const& vucSig) const;
// Encrypt a message.
Blob accountPrivateEncrypt (const RippleAddress& naPublicTo, Blob const& vucPlainText) const;
// Decrypt a message.
Blob accountPrivateDecrypt (const RippleAddress& naPublicFrom, Blob const& vucCipherText) const;
static RippleAddress createAccountPrivate (const RippleAddress& naGenerator, const RippleAddress& naSeed, int iSeq);
static RippleAddress createAccountPrivate (Blob const& vPrivate)
{
RippleAddress naNew;
naNew.setAccountPrivate (vPrivate);
return naNew;
}
static std::string createHumanAccountPrivate (Blob const& vPrivate)
{
return createAccountPrivate (vPrivate).humanAccountPrivate ();
}
//
// Generators
// Use to generate a master or regular family.
//
BIGNUM* getGeneratorBN () const; // DEPRECATED
Blob const& getGenerator () const;
std::string humanGenerator () const;
bool setGenerator (const std::string& strGenerator);
void setGenerator (Blob const& vPublic);
// void setGenerator(const RippleAddress& seed);
// Create generator for making public deterministic keys.
static RippleAddress createGeneratorPublic (const RippleAddress& naSeed);
//
// Seeds
// Clients must disallow reconizable entries from being seeds.
uint128 getSeed () const;
std::string humanSeed () const;
std::string humanSeed1751 () const;
bool setSeed (const std::string& strSeed);
int setSeed1751 (const std::string& strHuman1751);
bool setSeedGeneric (const std::string& strText);
void setSeed (uint128 hash128);
void setSeedRandom ();
static RippleAddress createSeedRandom ();
static RippleAddress createSeedGeneric (const std::string& strText);
};
#endif
// vim:ts=4

View File

@@ -0,0 +1,47 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_RIPPLESYSTEM_H
#define RIPPLE_RIPPLESYSTEM_H
/** Protocol specific constant globals.
*/
// VFALCO NOTE use these from now on instead of the macros!!
class RippleSystem
{
public:
static inline char const* getSystemName ()
{
return "ripple";
}
static char const* getCurrencyCode ()
{
return "XRP";
}
static char const* getCurrencyCodeRipple ()
{
return "XRR";
}
static int getCurrencyPrecision ()
{
return 6;
}
};
// VFALCO TODO I would love to replace these macros with the language
// constructs above. The problem is the way they are used at
// the point of call, i.e. "User-agent:" SYSTEM_NAME
// It will be necessary to rewrite some of them to use string streams.
//
#define SYSTEM_NAME "ripple"
#define SYSTEM_CURRENCY_CODE "XRP"
#define SYSTEM_CURRENCY_PRECISION 6
#define SYSTEM_CURRENCY_CODE_RIPPLE "XRR"
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,300 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
void STAmount::canonicalizeRound (bool isNative, uint64& value, int& offset, bool roundUp)
{
if (!roundUp) // canonicalize already rounds down
return;
WriteLog (lsTRACE, STAmount) << "canonicalize< " << value << ":" << offset << (roundUp ? " up" : " down");
if (isNative)
{
if (offset < 0)
{
int loops = 0;
while (offset < -1)
{
value /= 10;
++offset;
++loops;
}
value += (loops >= 2) ? 9 : 10; // add before last divide
value /= 10;
++offset;
}
}
else if (value > STAmount::cMaxValue)
{
while (value > (10 * STAmount::cMaxValue))
{
value /= 10;
++offset;
}
value += 9; // add before last divide
value /= 10;
++offset;
}
WriteLog (lsTRACE, STAmount) << "canonicalize> " << value << ":" << offset << (roundUp ? " up" : " down");
}
STAmount STAmount::addRound (const STAmount& v1, const STAmount& v2, bool roundUp)
{
v1.throwComparable (v2);
if (v2.mValue == 0)
return v1;
if (v1.mValue == 0)
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v2.mValue, v2.mOffset, v2.mIsNegative);
if (v1.mIsNative)
return STAmount (v1.getFName (), v1.getSNValue () + v2.getSNValue ());
int ov1 = v1.mOffset, ov2 = v2.mOffset;
int64 vv1 = static_cast<int64> (v1.mValue), vv2 = static_cast<uint64> (v2.mValue);
if (v1.mIsNegative)
vv1 = -vv1;
if (v2.mIsNegative)
vv2 = -vv2;
if (ov1 < ov2)
{
while (ov1 < (ov2 - 1))
{
vv1 /= 10;
++ov1;
}
if (roundUp)
vv1 += 9;
vv1 /= 10;
++ov1;
}
if (ov2 < ov1)
{
while (ov2 < (ov1 - 1))
{
vv2 /= 10;
++ov2;
}
if (roundUp)
vv2 += 9;
vv2 /= 10;
++ov2;
}
int64 fv = vv1 + vv2;
if ((fv >= -10) && (fv <= 10))
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer);
else if (fv >= 0)
{
uint64 v = static_cast<uint64> (fv);
canonicalizeRound (false, v, ov1, roundUp);
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v, ov1, false);
}
else
{
uint64 v = static_cast<uint64> (-fv);
canonicalizeRound (false, v, ov1, !roundUp);
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v, ov1, true);
}
}
STAmount STAmount::subRound (const STAmount& v1, const STAmount& v2, bool roundUp)
{
v1.throwComparable (v2);
if (v2.mValue == 0)
return v1;
if (v1.mValue == 0)
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v2.mValue, v2.mOffset, !v2.mIsNegative);
if (v1.mIsNative)
return STAmount (v1.getFName (), v1.getSNValue () - v2.getSNValue ());
int ov1 = v1.mOffset, ov2 = v2.mOffset;
int64 vv1 = static_cast<int64> (v1.mValue), vv2 = static_cast<uint64> (v2.mValue);
if (v1.mIsNegative)
vv1 = -vv1;
if (!v2.mIsNegative)
vv2 = -vv2;
if (ov1 < ov2)
{
while (ov1 < (ov2 - 1))
{
vv1 /= 10;
++ov1;
}
if (roundUp)
vv1 += 9;
vv1 /= 10;
++ov1;
}
if (ov2 < ov1)
{
while (ov2 < (ov1 - 1))
{
vv2 /= 10;
++ov2;
}
if (roundUp)
vv2 += 9;
vv2 /= 10;
++ov2;
}
int64 fv = vv1 + vv2;
if ((fv >= -10) && (fv <= 10))
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer);
else if (fv >= 0)
{
uint64 v = static_cast<uint64> (fv);
canonicalizeRound (false, v, ov1, roundUp);
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v, ov1, false);
}
else
{
uint64 v = static_cast<uint64> (-fv);
canonicalizeRound (false, v, ov1, !roundUp);
return STAmount (v1.getFName (), v1.mCurrency, v1.mIssuer, v, ov1, true);
}
}
STAmount STAmount::mulRound (const STAmount& v1, const STAmount& v2,
const uint160& uCurrencyID, const uint160& uIssuerID, bool roundUp)
{
if (v1.isZero () || v2.isZero ())
return STAmount (uCurrencyID, uIssuerID);
if (v1.mIsNative && v2.mIsNative && uCurrencyID.isZero ())
{
uint64 minV = (v1.getSNValue () < v2.getSNValue ()) ? v1.getSNValue () : v2.getSNValue ();
uint64 maxV = (v1.getSNValue () < v2.getSNValue ()) ? v2.getSNValue () : v1.getSNValue ();
if (minV > 3000000000ull) // sqrt(cMaxNative)
throw std::runtime_error ("Native value overflow");
if (((maxV >> 32) * minV) > 2095475792ull) // cMaxNative / 2^32
throw std::runtime_error ("Native value overflow");
return STAmount (v1.getFName (), minV * maxV);
}
uint64 value1 = v1.mValue, value2 = v2.mValue;
int offset1 = v1.mOffset, offset2 = v2.mOffset;
if (v1.mIsNative)
{
while (value1 < STAmount::cMinValue)
{
value1 *= 10;
--offset1;
}
}
if (v2.mIsNative)
{
while (value2 < STAmount::cMinValue)
{
value2 *= 10;
--offset2;
}
}
bool resultNegative = v1.mIsNegative != v2.mIsNegative;
// Compute (numerator * denominator) / 10^14 with rounding
// 10^16 <= result <= 10^18
CBigNum v;
if ((BN_add_word64 (&v, value1) != 1) || (BN_mul_word64 (&v, value2) != 1))
throw std::runtime_error ("internal bn error");
if (resultNegative != roundUp) // rounding down is automatic when we divide
BN_add_word64 (&v, tenTo14m1);
if (BN_div_word64 (&v, tenTo14) == ((uint64) - 1))
throw std::runtime_error ("internal bn error");
// 10^16 <= product <= 10^18
assert (BN_num_bytes (&v) <= 64);
uint64 amount = v.getuint64 ();
int offset = offset1 + offset2 + 14;
canonicalizeRound (uCurrencyID.isZero (), amount, offset, resultNegative != roundUp);
return STAmount (uCurrencyID, uIssuerID, amount, offset, resultNegative);
}
STAmount STAmount::divRound (const STAmount& num, const STAmount& den,
const uint160& uCurrencyID, const uint160& uIssuerID, bool roundUp)
{
if (den.isZero ())
throw std::runtime_error ("division by zero");
if (num.isZero ())
return STAmount (uCurrencyID, uIssuerID);
uint64 numVal = num.mValue, denVal = den.mValue;
int numOffset = num.mOffset, denOffset = den.mOffset;
if (num.mIsNative)
while (numVal < STAmount::cMinValue)
{
// Need to bring into range
numVal *= 10;
--numOffset;
}
if (den.mIsNative)
while (denVal < STAmount::cMinValue)
{
denVal *= 10;
--denOffset;
}
bool resultNegative = num.mIsNegative != den.mIsNegative;
// Compute (numerator * 10^17) / denominator
CBigNum v;
if ((BN_add_word64 (&v, numVal) != 1) || (BN_mul_word64 (&v, tenTo17) != 1))
throw std::runtime_error ("internal bn error");
if (resultNegative != roundUp) // Rounding down is automatic when we divide
BN_add_word64 (&v, denVal - 1);
if (BN_div_word64 (&v, denVal) == ((uint64) - 1))
throw std::runtime_error ("internal bn error");
// 10^16 <= quotient <= 10^18
assert (BN_num_bytes (&v) <= 64);
uint64 amount = v.getuint64 ();
int offset = numOffset - denOffset - 17;
canonicalizeRound (uCurrencyID.isZero (), amount, offset, resultNegative != roundUp);
return STAmount (uCurrencyID, uIssuerID, amount, offset, resultNegative);
}

View File

@@ -0,0 +1,186 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// This is not really a header file, but it can be used as one with
// appropriate #define statements.
/*
Common type common field - 1 byte
Common type uncommon field - 2 bytes
...
Rarity of fields determines the number of bytes.
This is done to reduce the average size of the messages.
*/
// types (common)
TYPE (Int16, UINT16, 1)
TYPE (Int32, UINT32, 2)
TYPE (Int64, UINT64, 3)
TYPE (Hash128, HASH128, 4)
TYPE (Hash256, HASH256, 5)
TYPE (Amount, AMOUNT, 6)
TYPE (VariableLength, VL, 7)
TYPE (Account, ACCOUNT, 8)
// 9-13 are reserved
TYPE (Object, OBJECT, 14)
TYPE (Array, ARRAY, 15)
// types (uncommon)
TYPE (Int8, UINT8, 16)
TYPE (Hash160, HASH160, 17)
TYPE (PathSet, PATHSET, 18)
TYPE (Vector256, VECTOR256, 19)
// 8-bit integers
FIELD (CloseResolution, UINT8, 1)
FIELD (TemplateEntryType, UINT8, 2)
FIELD (TransactionResult, UINT8, 3)
// 16-bit integers
FIELD (LedgerEntryType, UINT16, 1)
FIELD (TransactionType, UINT16, 2)
// 32-bit integers (common)
FIELD (Flags, UINT32, 2)
FIELD (SourceTag, UINT32, 3)
FIELD (Sequence, UINT32, 4)
FIELD (PreviousTxnLgrSeq, UINT32, 5)
FIELD (LedgerSequence, UINT32, 6)
FIELD (CloseTime, UINT32, 7)
FIELD (ParentCloseTime, UINT32, 8)
FIELD (SigningTime, UINT32, 9)
FIELD (Expiration, UINT32, 10)
FIELD (TransferRate, UINT32, 11)
FIELD (WalletSize, UINT32, 12)
FIELD (OwnerCount, UINT32, 13)
FIELD (DestinationTag, UINT32, 14)
// 32-bit integers (uncommon)
FIELD (HighQualityIn, UINT32, 16)
FIELD (HighQualityOut, UINT32, 17)
FIELD (LowQualityIn, UINT32, 18)
FIELD (LowQualityOut, UINT32, 19)
FIELD (QualityIn, UINT32, 20)
FIELD (QualityOut, UINT32, 21)
FIELD (StampEscrow, UINT32, 22)
FIELD (BondAmount, UINT32, 23)
FIELD (LoadFee, UINT32, 24)
FIELD (OfferSequence, UINT32, 25)
FIELD (FirstLedgerSequence, UINT32, 26) // Deprecated: do not use
FIELD (LastLedgerSequence, UINT32, 27)
FIELD (TransactionIndex, UINT32, 28)
FIELD (OperationLimit, UINT32, 29)
FIELD (ReferenceFeeUnits, UINT32, 30)
FIELD (ReserveBase, UINT32, 31)
FIELD (ReserveIncrement, UINT32, 32)
FIELD (SetFlag, UINT32, 33)
FIELD (ClearFlag, UINT32, 34)
// 64-bit integers
FIELD (IndexNext, UINT64, 1)
FIELD (IndexPrevious, UINT64, 2)
FIELD (BookNode, UINT64, 3)
FIELD (OwnerNode, UINT64, 4)
FIELD (BaseFee, UINT64, 5)
FIELD (ExchangeRate, UINT64, 6)
FIELD (LowNode, UINT64, 7)
FIELD (HighNode, UINT64, 8)
// 128-bit
FIELD (EmailHash, HASH128, 1)
// 256-bit (common)
FIELD (LedgerHash, HASH256, 1)
FIELD (ParentHash, HASH256, 2)
FIELD (TransactionHash, HASH256, 3)
FIELD (AccountHash, HASH256, 4)
FIELD (PreviousTxnID, HASH256, 5)
FIELD (LedgerIndex, HASH256, 6)
FIELD (WalletLocator, HASH256, 7)
FIELD (RootIndex, HASH256, 8)
// 256-bit (uncommon)
FIELD (BookDirectory, HASH256, 16)
FIELD (InvoiceID, HASH256, 17)
FIELD (Nickname, HASH256, 18)
FIELD (Feature, HASH256, 19)
// 160-bit (common)
FIELD (TakerPaysCurrency, HASH160, 1)
FIELD (TakerPaysIssuer, HASH160, 2)
FIELD (TakerGetsCurrency, HASH160, 3)
FIELD (TakerGetsIssuer, HASH160, 4)
// currency amount (common)
FIELD (Amount, AMOUNT, 1)
FIELD (Balance, AMOUNT, 2)
FIELD (LimitAmount, AMOUNT, 3)
FIELD (TakerPays, AMOUNT, 4)
FIELD (TakerGets, AMOUNT, 5)
FIELD (LowLimit, AMOUNT, 6)
FIELD (HighLimit, AMOUNT, 7)
FIELD (Fee, AMOUNT, 8)
FIELD (SendMax, AMOUNT, 9)
// currency amount (uncommon)
FIELD (MinimumOffer, AMOUNT, 16)
FIELD (RippleEscrow, AMOUNT, 17)
// variable length
FIELD (PublicKey, VL, 1)
FIELD (MessageKey, VL, 2)
FIELD (SigningPubKey, VL, 3)
FIELD (TxnSignature, VL, 4)
FIELD (Generator, VL, 5)
FIELD (Signature, VL, 6)
FIELD (Domain, VL, 7)
FIELD (FundCode, VL, 8)
FIELD (RemoveCode, VL, 9)
FIELD (ExpireCode, VL, 10)
FIELD (CreateCode, VL, 11)
// account
FIELD (Account, ACCOUNT, 1)
FIELD (Owner, ACCOUNT, 2)
FIELD (Destination, ACCOUNT, 3)
FIELD (Issuer, ACCOUNT, 4)
FIELD (Target, ACCOUNT, 7)
FIELD (RegularKey, ACCOUNT, 8)
// path set
FIELD (Paths, PATHSET, 1)
// vector of 256-bit
FIELD (Indexes, VECTOR256, 1)
FIELD (Hashes, VECTOR256, 2)
FIELD (Features, VECTOR256, 3)
// inner object
// OBJECT/1 is reserved for end of object
FIELD (TransactionMetaData, OBJECT, 2)
FIELD (CreatedNode, OBJECT, 3)
FIELD (DeletedNode, OBJECT, 4)
FIELD (ModifiedNode, OBJECT, 5)
FIELD (PreviousFields, OBJECT, 6)
FIELD (FinalFields, OBJECT, 7)
FIELD (NewFields, OBJECT, 8)
FIELD (TemplateEntry, OBJECT, 9)
// array of objects
// ARRAY/1 is reserved for end of array
FIELD (SigningAccounts, ARRAY, 2)
FIELD (TxnSignatures, ARRAY, 3)
FIELD (Signatures, ARRAY, 4)
FIELD (Template, ARRAY, 5)
FIELD (Necessary, ARRAY, 6)
FIELD (Sufficient, ARRAY, 7)
FIELD (AffectedNodes, ARRAY, 8)
// vim:ts=4

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,510 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_SERIALIZEDOBJECT_H
#define RIPPLE_SERIALIZEDOBJECT_H
class STObject
: public SerializedType
, public CountedObject <STObject>
{
public:
static char const* getCountedObjectName () { return "STObject"; }
STObject () : mType (NULL)
{
;
}
explicit STObject (SField::ref name) : SerializedType (name), mType (NULL)
{
;
}
STObject (const SOTemplate & type, SField::ref name) : SerializedType (name)
{
set (type);
}
STObject (const SOTemplate & type, SerializerIterator & sit, SField::ref name) : SerializedType (name)
{
set (sit);
setType (type);
}
UPTR_T<STObject> oClone () const
{
return UPTR_T<STObject> (new STObject (*this));
}
static UPTR_T<STObject> parseJson (const Json::Value & value, SField::ref name = sfGeneric, int depth = 0);
virtual ~STObject ()
{
;
}
static UPTR_T<SerializedType> deserialize (SerializerIterator & sit, SField::ref name);
bool setType (const SOTemplate & type);
bool isValidForType ();
bool isFieldAllowed (SField::ref);
bool isFree () const
{
return mType == NULL;
}
void set (const SOTemplate&);
bool set (SerializerIterator & u, int depth = 0);
virtual SerializedTypeID getSType () const
{
return STI_OBJECT;
}
virtual bool isEquivalent (const SerializedType & t) const;
virtual bool isDefault () const
{
return mData.empty ();
}
virtual void add (Serializer & s) const
{
add (s, true); // just inner elements
}
void add (Serializer & s, bool withSignature) const;
// VFALCO NOTE does this return an expensive copy of an object with a dynamic buffer?
// VFALCO TODO Remove this function and fix the few callers.
Serializer getSerializer () const
{
Serializer s;
add (s);
return s;
}
std::string getFullText () const;
std::string getText () const;
virtual Json::Value getJson (int options) const;
int addObject (const SerializedType & t)
{
mData.push_back (t.clone ().release ());
return mData.size () - 1;
}
int giveObject (UPTR_T<SerializedType> t)
{
mData.push_back (t.release ());
return mData.size () - 1;
}
int giveObject (SerializedType * t)
{
mData.push_back (t);
return mData.size () - 1;
}
const boost::ptr_vector<SerializedType>& peekData () const
{
return mData;
}
boost::ptr_vector<SerializedType>& peekData ()
{
return mData;
}
SerializedType& front ()
{
return mData.front ();
}
const SerializedType& front () const
{
return mData.front ();
}
SerializedType& back ()
{
return mData.back ();
}
const SerializedType& back () const
{
return mData.back ();
}
int getCount () const
{
return mData.size ();
}
bool setFlag (uint32);
bool clearFlag (uint32);
bool isFlag(uint32);
uint32 getFlags () const;
uint256 getHash (uint32 prefix) const;
uint256 getSigningHash (uint32 prefix) const;
const SerializedType& peekAtIndex (int offset) const
{
return mData[offset];
}
SerializedType& getIndex (int offset)
{
return mData[offset];
}
const SerializedType* peekAtPIndex (int offset) const
{
return & (mData[offset]);
}
SerializedType* getPIndex (int offset)
{
return & (mData[offset]);
}
int getFieldIndex (SField::ref field) const;
SField::ref getFieldSType (int index) const;
const SerializedType& peekAtField (SField::ref field) const;
SerializedType& getField (SField::ref field);
const SerializedType* peekAtPField (SField::ref field) const;
SerializedType* getPField (SField::ref field, bool createOkay = false);
// these throw if the field type doesn't match, or return default values if the
// field is optional but not present
std::string getFieldString (SField::ref field) const;
unsigned char getFieldU8 (SField::ref field) const;
uint16 getFieldU16 (SField::ref field) const;
uint32 getFieldU32 (SField::ref field) const;
uint64 getFieldU64 (SField::ref field) const;
uint128 getFieldH128 (SField::ref field) const;
uint160 getFieldH160 (SField::ref field) const;
uint256 getFieldH256 (SField::ref field) const;
RippleAddress getFieldAccount (SField::ref field) const;
uint160 getFieldAccount160 (SField::ref field) const;
Blob getFieldVL (SField::ref field) const;
const STAmount& getFieldAmount (SField::ref field) const;
const STPathSet& getFieldPathSet (SField::ref field) const;
const STVector256& getFieldV256 (SField::ref field) const;
void setFieldU8 (SField::ref field, unsigned char);
void setFieldU16 (SField::ref field, uint16);
void setFieldU32 (SField::ref field, uint32);
void setFieldU64 (SField::ref field, uint64);
void setFieldH128 (SField::ref field, const uint128&);
void setFieldH160 (SField::ref field, const uint160&);
void setFieldH256 (SField::ref field, uint256 const& );
void setFieldVL (SField::ref field, Blob const&);
void setFieldAccount (SField::ref field, const uint160&);
void setFieldAccount (SField::ref field, const RippleAddress & addr)
{
setFieldAccount (field, addr.getAccountID ());
}
void setFieldAmount (SField::ref field, const STAmount&);
void setFieldPathSet (SField::ref field, const STPathSet&);
void setFieldV256 (SField::ref field, const STVector256 & v);
STObject& peekFieldObject (SField::ref field);
bool isFieldPresent (SField::ref field) const;
SerializedType* makeFieldPresent (SField::ref field);
void makeFieldAbsent (SField::ref field);
bool delField (SField::ref field);
void delField (int index);
static UPTR_T <SerializedType> makeDefaultObject (SerializedTypeID id, SField::ref name);
// VFALCO TODO remove the 'depth' parameter
static UPTR_T<SerializedType> makeDeserializedObject (
SerializedTypeID id,
SField::ref name,
SerializerIterator&,
int depth);
static UPTR_T<SerializedType> makeNonPresentObject (SField::ref name)
{
return makeDefaultObject (STI_NOTPRESENT, name);
}
static UPTR_T<SerializedType> makeDefaultObject (SField::ref name)
{
return makeDefaultObject (name.fieldType, name);
}
// field iterator stuff
typedef boost::ptr_vector<SerializedType>::iterator iterator;
typedef boost::ptr_vector<SerializedType>::const_iterator const_iterator;
iterator begin ()
{
return mData.begin ();
}
iterator end ()
{
return mData.end ();
}
const_iterator begin () const
{
return mData.begin ();
}
const_iterator end () const
{
return mData.end ();
}
bool empty () const
{
return mData.empty ();
}
bool hasMatchingEntry (const SerializedType&);
bool operator== (const STObject & o) const;
bool operator!= (const STObject & o) const
{
return ! (*this == o);
}
private:
/** Returns a value or throws if out of range.
This will throw if the source value cannot be represented
within the destination type.
*/
// VFALCO NOTE This won't work right
/*
template <class T, class U>
static T getWithRangeCheck (U v)
{
if (v < std::numeric_limits <T>::min ()) ||
v > std::numeric_limits <T>::max ())
{
throw std::runtime_error ("Value out of range");
}
return static_cast <T> (v);
}
*/
// VFALCO TODO these parameters should not be const references.
template <typename T, typename U>
static T range_check_cast (const U& value, const T& minimum, const T& maximum)
{
if ((value < minimum) || (value > maximum))
throw std::runtime_error ("Value out of range");
return static_cast<T> (value);
}
STObject* duplicate () const
{
return new STObject (*this);
}
STObject (SField::ref name, boost::ptr_vector<SerializedType>& data) : SerializedType (name), mType (NULL)
{
mData.swap (data);
}
private:
boost::ptr_vector<SerializedType> mData;
const SOTemplate* mType;
};
//------------------------------------------------------------------------------
inline STObject::iterator range_begin (STObject& x)
{
return x.begin ();
}
inline STObject::iterator range_end (STObject& x)
{
return x.end ();
}
//------------------------------------------------------------------------------
class STArray
: public SerializedType
, public CountedObject <STArray>
{
public:
static char const* getCountedObjectName () { return "STArray"; }
typedef boost::ptr_vector<STObject> vector;
typedef boost::ptr_vector<STObject>::iterator iterator;
typedef boost::ptr_vector<STObject>::const_iterator const_iterator;
typedef boost::ptr_vector<STObject>::reverse_iterator reverse_iterator;
typedef boost::ptr_vector<STObject>::const_reverse_iterator const_reverse_iterator;
typedef boost::ptr_vector<STObject>::size_type size_type;
public:
STArray ()
{
;
}
explicit STArray (int n)
{
value.reserve (n);
}
explicit STArray (SField::ref f) : SerializedType (f)
{
;
}
STArray (SField::ref f, int n) : SerializedType (f)
{
value.reserve (n);
}
STArray (SField::ref f, const vector & v) : SerializedType (f), value (v)
{
;
}
explicit STArray (vector & v) : value (v)
{
;
}
static UPTR_T<SerializedType> deserialize (SerializerIterator & sit, SField::ref name)
{
return UPTR_T<SerializedType> (construct (sit, name));
}
const vector& getValue () const
{
return value;
}
vector& getValue ()
{
return value;
}
// VFALCO NOTE as long as we're married to boost why not use boost::iterator_facade?
//
// vector-like functions
void push_back (const STObject & object)
{
value.push_back (object.oClone ().release ());
}
STObject& operator[] (int j)
{
return value[j];
}
const STObject& operator[] (int j) const
{
return value[j];
}
iterator begin ()
{
return value.begin ();
}
const_iterator begin () const
{
return value.begin ();
}
iterator end ()
{
return value.end ();
}
const_iterator end () const
{
return value.end ();
}
size_type size () const
{
return value.size ();
}
reverse_iterator rbegin ()
{
return value.rbegin ();
}
const_reverse_iterator rbegin () const
{
return value.rbegin ();
}
reverse_iterator rend ()
{
return value.rend ();
}
const_reverse_iterator rend () const
{
return value.rend ();
}
iterator erase (iterator pos)
{
return value.erase (pos);
}
STObject& front ()
{
return value.front ();
}
const STObject& front () const
{
return value.front ();
}
STObject& back ()
{
return value.back ();
}
const STObject& back () const
{
return value.back ();
}
void pop_back ()
{
value.pop_back ();
}
bool empty () const
{
return value.empty ();
}
void clear ()
{
value.clear ();
}
void swap (STArray & a)
{
value.swap (a.value);
}
virtual std::string getFullText () const;
virtual std::string getText () const;
virtual Json::Value getJson (int) const;
virtual void add (Serializer & s) const;
void sort (bool (*compare) (const STObject & o1, const STObject & o2));
bool operator== (const STArray & s)
{
return value == s.value;
}
bool operator!= (const STArray & s)
{
return value != s.value;
}
virtual SerializedTypeID getSType () const
{
return STI_ARRAY;
}
virtual bool isEquivalent (const SerializedType & t) const;
virtual bool isDefault () const
{
return value.empty ();
}
private:
vector value;
STArray* duplicate () const
{
return new STArray (*this);
}
static STArray* construct (SerializerIterator&, SField::ref);
};
inline STArray::iterator range_begin (STArray& x)
{
return x.begin ();
}
inline STArray::iterator range_end (STArray& x)
{
return x.end ();
}
#endif

View File

@@ -0,0 +1,47 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
SOTemplate::SOTemplate ()
{
}
void SOTemplate::push_back (SOElement const& r)
{
// Ensure there is the enough space in the index mapping
// table for all possible fields.
//
if (mIndex.empty ())
{
// Unmapped indices will be set to -1
//
mIndex.resize (SField::getNumFields () + 1, -1);
}
// Make sure the field's index is in range
//
assert (r.e_field.getNum () < mIndex.size ());
// Make sure that this field hasn't already been assigned
//
assert (getIndex (r.e_field) == -1);
// Add the field to the index mapping table
//
mIndex [r.e_field.getNum ()] = mTypes.size ();
// Append the new element.
//
mTypes.push_back (new SOElement (r));
}
int SOTemplate::getIndex (SField::ref f) const
{
// The mapping table should be large enough for any possible field
//
assert (f.getNum () < mIndex.size ());
return mIndex[f.getNum ()];
}

View File

@@ -0,0 +1,81 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_SERIALIZEDOBJECTTEMPLATE_H
#define RIPPLE_SERIALIZEDOBJECTTEMPLATE_H
//------------------------------------------------------------------------------
/** Flags for elements in a SerializedObjectTemplate.
*/
// VFALCO NOTE these don't look like bit-flags...
enum SOE_Flags
{
SOE_INVALID = -1,
SOE_REQUIRED = 0, // required
SOE_OPTIONAL = 1, // optional, may be present with default value
SOE_DEFAULT = 2, // optional, if present, must not have default value
};
//------------------------------------------------------------------------------
/** An element in a SerializedObjectTemplate.
*/
class SOElement
{
public:
SField::ref const e_field;
SOE_Flags const flags;
SOElement (SField::ref fieldName, SOE_Flags flags)
: e_field (fieldName)
, flags (flags)
{
}
};
//------------------------------------------------------------------------------
/** Defines the fields and their attributes within a SerializedObject.
Each subclass of SerializedObject will provide its own template
describing the available fields and their metadata attributes.
*/
class SOTemplate
{
public:
/** Create an empty template.
After creating the template, call @ref push_back with the
desired fields.
@see push_back
*/
SOTemplate ();
// VFALCO NOTE Why do we even bother with the 'private' keyword if
// this function is present?
//
std::vector <SOElement const*> const& peek () const
{
return mTypes;
}
/** Add an element to the template.
*/
void push_back (SOElement const& r);
/** Retrieve the position of a named field.
*/
int getIndex (SField::ref) const;
private:
std::vector <SOElement const*> mTypes;
std::vector <int> mIndex; // field num -> index
};
#endif

View File

@@ -0,0 +1,609 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
SETUP_LOG (SerializedType)
const STAmount saZero (CURRENCY_ONE, ACCOUNT_ONE, 0);
const STAmount saOne (CURRENCY_ONE, ACCOUNT_ONE, 1);
SerializedType& SerializedType::operator= (const SerializedType& t)
{
if ((t.fName != fName) && fName->isUseful () && t.fName->isUseful ())
{
WriteLog ((t.getSType () == STI_AMOUNT) ? lsDEBUG : lsWARNING, SerializedType) // This is common for amounts
<< "Caution: " << t.fName->getName () << " not replacing " << fName->getName ();
}
if (!fName->isUseful ()) fName = t.fName;
return *this;
}
bool SerializedType::isEquivalent (const SerializedType& t) const
{
assert (getSType () == STI_NOTPRESENT);
if (t.getSType () == STI_NOTPRESENT)
return true;
WriteLog (lsDEBUG, SerializedType) << "notEquiv " << getFullText() << " not STI_NOTPRESENT";
return false;
}
void STPathSet::printDebug ()
{
// VFALCO NOTE Can't use Log::out() because of std::endl
//
for (int i = 0; i < value.size (); i++)
{
std::cerr << i << ": ";
for (int j = 0; j < value[i].mPath.size (); j++)
{
//STPathElement pe = value[i].mPath[j];
RippleAddress nad;
nad.setAccountID (value[i].mPath[j].mAccountID);
std::cerr << " " << nad.humanAccountID ();
//std::cerr << " " << pe.mAccountID.GetHex();
}
std::cerr << std::endl;
}
}
void STPath::printDebug ()
{
Log::out() << "STPath:";
for (int i = 0; i < mPath.size (); i++)
{
RippleAddress nad;
nad.setAccountID (mPath[i].mAccountID);
Log::out() << " " << i << ": " << nad.humanAccountID ();
}
}
std::string SerializedType::getFullText () const
{
std::string ret;
if (getSType () != STI_NOTPRESENT)
{
if (fName->hasName ())
{
ret = fName->fieldName;
ret += " = ";
}
ret += getText ();
}
return ret;
}
STUInt8* STUInt8::construct (SerializerIterator& u, SField::ref name)
{
return new STUInt8 (name, u.get8 ());
}
std::string STUInt8::getText () const
{
if (getFName () == sfTransactionResult)
{
std::string token, human;
if (transResultInfo (static_cast<TER> (value), token, human))
return human;
}
return lexicalCastThrow <std::string> (value);
}
Json::Value STUInt8::getJson (int) const
{
if (getFName () == sfTransactionResult)
{
std::string token, human;
if (transResultInfo (static_cast<TER> (value), token, human))
return token;
else
WriteLog (lsWARNING, SerializedType) << "Unknown result code in metadata: " << value;
}
return value;
}
bool STUInt8::isEquivalent (const SerializedType& t) const
{
const STUInt8* v = dynamic_cast<const STUInt8*> (&t);
return v && (value == v->value);
}
STUInt16* STUInt16::construct (SerializerIterator& u, SField::ref name)
{
return new STUInt16 (name, u.get16 ());
}
std::string STUInt16::getText () const
{
if (getFName () == sfLedgerEntryType)
{
LedgerFormats::Item const* const item =
LedgerFormats::getInstance ()->findByType (static_cast <LedgerEntryType> (value));
if (item != nullptr)
return item->getName ();
}
if (getFName () == sfTransactionType)
{
TxFormats::Item const* const item =
TxFormats::getInstance()->findByType (static_cast <TxType> (value));
if (item != nullptr)
return item->getName ();
}
return lexicalCastThrow <std::string> (value);
}
Json::Value STUInt16::getJson (int) const
{
if (getFName () == sfLedgerEntryType)
{
LedgerFormats::Item const* const item =
LedgerFormats::getInstance ()->findByType (static_cast <LedgerEntryType> (value));
if (item != nullptr)
return item->getName ();
}
if (getFName () == sfTransactionType)
{
TxFormats::Item const* const item =
TxFormats::getInstance()->findByType (static_cast <TxType> (value));
if (item != nullptr)
return item->getName ();
}
return value;
}
bool STUInt16::isEquivalent (const SerializedType& t) const
{
const STUInt16* v = dynamic_cast<const STUInt16*> (&t);
return v && (value == v->value);
}
STUInt32* STUInt32::construct (SerializerIterator& u, SField::ref name)
{
return new STUInt32 (name, u.get32 ());
}
std::string STUInt32::getText () const
{
return lexicalCastThrow <std::string> (value);
}
Json::Value STUInt32::getJson (int) const
{
return value;
}
bool STUInt32::isEquivalent (const SerializedType& t) const
{
const STUInt32* v = dynamic_cast<const STUInt32*> (&t);
return v && (value == v->value);
}
STUInt64* STUInt64::construct (SerializerIterator& u, SField::ref name)
{
return new STUInt64 (name, u.get64 ());
}
std::string STUInt64::getText () const
{
return lexicalCastThrow <std::string> (value);
}
Json::Value STUInt64::getJson (int) const
{
return strHex (value);
}
bool STUInt64::isEquivalent (const SerializedType& t) const
{
const STUInt64* v = dynamic_cast<const STUInt64*> (&t);
return v && (value == v->value);
}
STHash128* STHash128::construct (SerializerIterator& u, SField::ref name)
{
return new STHash128 (name, u.get128 ());
}
std::string STHash128::getText () const
{
return value.GetHex ();
}
bool STHash128::isEquivalent (const SerializedType& t) const
{
const STHash128* v = dynamic_cast<const STHash128*> (&t);
return v && (value == v->value);
}
STHash160* STHash160::construct (SerializerIterator& u, SField::ref name)
{
return new STHash160 (name, u.get160 ());
}
std::string STHash160::getText () const
{
return value.GetHex ();
}
bool STHash160::isEquivalent (const SerializedType& t) const
{
const STHash160* v = dynamic_cast<const STHash160*> (&t);
return v && (value == v->value);
}
STHash256* STHash256::construct (SerializerIterator& u, SField::ref name)
{
return new STHash256 (name, u.get256 ());
}
std::string STHash256::getText () const
{
return value.GetHex ();
}
bool STHash256::isEquivalent (const SerializedType& t) const
{
const STHash256* v = dynamic_cast<const STHash256*> (&t);
return v && (value == v->value);
}
STVariableLength::STVariableLength (SerializerIterator& st, SField::ref name) : SerializedType (name)
{
value = st.getVL ();
}
std::string STVariableLength::getText () const
{
return strHex (value);
}
STVariableLength* STVariableLength::construct (SerializerIterator& u, SField::ref name)
{
return new STVariableLength (name, u.getVL ());
}
bool STVariableLength::isEquivalent (const SerializedType& t) const
{
const STVariableLength* v = dynamic_cast<const STVariableLength*> (&t);
return v && (value == v->value);
}
std::string STAccount::getText () const
{
uint160 u;
RippleAddress a;
if (!getValueH160 (u))
return STVariableLength::getText ();
a.setAccountID (u);
return a.humanAccountID ();
}
STAccount* STAccount::construct (SerializerIterator& u, SField::ref name)
{
return new STAccount (name, u.getVL ());
}
//
// STVector256
//
// Return a new object from a SerializerIterator.
STVector256* STVector256::construct (SerializerIterator& u, SField::ref name)
{
Blob data = u.getVL ();
Blob ::iterator begin = data.begin ();
UPTR_T<STVector256> vec (new STVector256 (name));
int count = data.size () / (256 / 8);
vec->mValue.reserve (count);
unsigned int uStart = 0;
for (unsigned int i = 0; i != count; i++)
{
unsigned int uEnd = uStart + (256 / 8);
// This next line could be optimized to construct a default uint256 in the vector and then copy into it
vec->mValue.push_back (uint256 (Blob (begin + uStart, begin + uEnd)));
uStart = uEnd;
}
return vec.release ();
}
void STVector256::add (Serializer& s) const
{
s.addVL (mValue.empty () ? NULL : mValue[0].begin (), mValue.size () * (256 / 8));
}
bool STVector256::isEquivalent (const SerializedType& t) const
{
const STVector256* v = dynamic_cast<const STVector256*> (&t);
return v && (mValue == v->mValue);
}
bool STVector256::hasValue (uint256 const& v) const
{
BOOST_FOREACH (uint256 const & hash, mValue)
{
if (hash == v)
return true;
}
return false;
}
//
// STAccount
//
STAccount::STAccount (SField::ref n, const uint160& v) : STVariableLength (n)
{
peekValue ().insert (peekValue ().end (), v.begin (), v.end ());
}
bool STAccount::isValueH160 () const
{
return peekValue ().size () == (160 / 8);
}
void STAccount::setValueH160 (const uint160& v)
{
peekValue ().clear ();
peekValue ().insert (peekValue ().end (), v.begin (), v.end ());
assert (peekValue ().size () == (160 / 8));
}
bool STAccount::getValueH160 (uint160& v) const
{
if (!isValueH160 ()) return false;
memcpy (v.begin (), & (peekValue ().front ()), (160 / 8));
return true;
}
RippleAddress STAccount::getValueNCA () const
{
RippleAddress a;
uint160 v;
if (getValueH160 (v))
a.setAccountID (v);
return a;
}
void STAccount::setValueNCA (const RippleAddress& nca)
{
setValueH160 (nca.getAccountID ());
}
STPathSet* STPathSet::construct (SerializerIterator& s, SField::ref name)
{
std::vector<STPath> paths;
std::vector<STPathElement> path;
do
{
int iType = s.get8 ();
if (iType == STPathElement::typeEnd || iType == STPathElement::typeBoundary)
{
if (path.empty ())
{
WriteLog (lsINFO, SerializedType) << "STPathSet: Empty path.";
throw std::runtime_error ("empty path");
}
paths.push_back (path);
path.clear ();
if (iType == STPathElement::typeEnd)
{
return new STPathSet (name, paths);
}
}
else if (iType & ~STPathElement::typeValidBits)
{
WriteLog (lsINFO, SerializedType) << "STPathSet: Bad path element: " << iType;
throw std::runtime_error ("bad path element");
}
else
{
const bool bAccount = !! (iType & STPathElement::typeAccount);
const bool bCurrency = !! (iType & STPathElement::typeCurrency);
const bool bIssuer = !! (iType & STPathElement::typeIssuer);
uint160 uAccountID;
uint160 uCurrency;
uint160 uIssuerID;
if (bAccount)
uAccountID = s.get160 ();
if (bCurrency)
uCurrency = s.get160 ();
if (bIssuer)
uIssuerID = s.get160 ();
path.push_back (STPathElement (uAccountID, uCurrency, uIssuerID, bCurrency));
}
}
while (1);
}
bool STPathSet::isEquivalent (const SerializedType& t) const
{
const STPathSet* v = dynamic_cast<const STPathSet*> (&t);
return v && (value == v->value);
}
bool STPath::hasSeen (const uint160& uAccountId, const uint160& uCurrencyID, const uint160& uIssuerID) const
{
for (int i = 0; i < mPath.size (); ++i)
{
const STPathElement& ele = getElement (i);
if (ele.getAccountID () == uAccountId
&& ele.getCurrency () == uCurrencyID
&& ele.getIssuerID () == uIssuerID)
return true;
}
return false;
}
Json::Value STPath::getJson (int) const
{
Json::Value ret (Json::arrayValue);
BOOST_FOREACH (std::vector<STPathElement>::const_iterator::value_type it, mPath)
{
Json::Value elem (Json::objectValue);
int iType = it.getNodeType ();
elem["type"] = iType;
elem["type_hex"] = strHex (iType);
if (iType & STPathElement::typeAccount)
elem["account"] = RippleAddress::createHumanAccountID (it.getAccountID ());
if (iType & STPathElement::typeCurrency)
elem["currency"] = STAmount::createHumanCurrency (it.getCurrency ());
if (iType & STPathElement::typeIssuer)
elem["issuer"] = RippleAddress::createHumanAccountID (it.getIssuerID ());
ret.append (elem);
}
return ret;
}
Json::Value STPathSet::getJson (int options) const
{
Json::Value ret (Json::arrayValue);
BOOST_FOREACH (std::vector<STPath>::const_iterator::value_type it, value)
ret.append (it.getJson (options));
return ret;
}
#if 0
std::string STPath::getText () const
{
std::string ret ("[");
bool first = true;
BOOST_FOREACH (const STPathElement & it, mPath)
{
if (!first) ret += ", ";
switch (it.getNodeType ())
{
case STPathElement::typeAccount:
{
ret += RippleAddress::createHumanAccountID (it.getNode ());
break;
}
case STPathElement::typeOffer:
{
ret += "Offer(";
ret += it.getNode ().GetHex ();
ret += ")";
break;
}
default:
throw std::runtime_error ("Unknown path element");
}
first = false;
}
return ret + "]";
}
#endif
#if 0
std::string STPathSet::getText () const
{
std::string ret ("{");
bool firstPath = true;
BOOST_FOREACH (std::vector<STPath>::const_iterator::value_type it, value)
{
if (!firstPath)
{
ret += ", ";
firstPath = false;
}
ret += it.getText ();
}
return ret + "}";
}
#endif
void STPathSet::add (Serializer& s) const
{
bool bFirst = true;
BOOST_FOREACH (const STPath & spPath, value)
{
if (!bFirst)
{
s.add8 (STPathElement::typeBoundary);
}
BOOST_FOREACH (const STPathElement & speElement, spPath)
{
int iType = speElement.getNodeType ();
s.add8 (iType);
if (iType & STPathElement::typeAccount)
s.add160 (speElement.getAccountID ());
if (iType & STPathElement::typeCurrency)
s.add160 (speElement.getCurrency ());
if (iType & STPathElement::typeIssuer)
s.add160 (speElement.getIssuerID ());
}
bFirst = false;
}
s.add8 (STPathElement::typeEnd);
}
// vim:ts=4

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,735 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
SETUP_LOG (Serializer)
int Serializer::addZeros (size_t uBytes)
{
int ret = mData.size ();
while (uBytes--)
mData.push_back (0);
return ret;
}
int Serializer::add16 (uint16 i)
{
int ret = mData.size ();
mData.push_back (static_cast<unsigned char> (i >> 8));
mData.push_back (static_cast<unsigned char> (i & 0xff));
return ret;
}
int Serializer::add32 (uint32 i)
{
int ret = mData.size ();
mData.push_back (static_cast<unsigned char> (i >> 24));
mData.push_back (static_cast<unsigned char> ((i >> 16) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 8) & 0xff));
mData.push_back (static_cast<unsigned char> (i & 0xff));
return ret;
}
int Serializer::add64 (uint64 i)
{
int ret = mData.size ();
mData.push_back (static_cast<unsigned char> (i >> 56));
mData.push_back (static_cast<unsigned char> ((i >> 48) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 40) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 32) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 24) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 16) & 0xff));
mData.push_back (static_cast<unsigned char> ((i >> 8) & 0xff));
mData.push_back (static_cast<unsigned char> (i & 0xff));
return ret;
}
int Serializer::add128 (const uint128& i)
{
int ret = mData.size ();
mData.insert (mData.end (), i.begin (), i.end ());
return ret;
}
int Serializer::add160 (const uint160& i)
{
int ret = mData.size ();
mData.insert (mData.end (), i.begin (), i.end ());
return ret;
}
int Serializer::add256 (uint256 const& i)
{
int ret = mData.size ();
mData.insert (mData.end (), i.begin (), i.end ());
return ret;
}
int Serializer::addRaw (Blob const& vector)
{
int ret = mData.size ();
mData.insert (mData.end (), vector.begin (), vector.end ());
return ret;
}
int Serializer::addRaw (const Serializer& s)
{
int ret = mData.size ();
mData.insert (mData.end (), s.begin (), s.end ());
return ret;
}
int Serializer::addRaw (const void* ptr, int len)
{
int ret = mData.size ();
mData.insert (mData.end (), (const char*) ptr, ((const char*)ptr) + len);
return ret;
}
bool Serializer::get16 (uint16& o, int offset) const
{
if ((offset + 2) > mData.size ()) return false;
const unsigned char* ptr = &mData[offset];
o = *ptr++;
o <<= 8;
o |= *ptr;
return true;
}
bool Serializer::get32 (uint32& o, int offset) const
{
if ((offset + 4) > mData.size ()) return false;
const unsigned char* ptr = &mData[offset];
o = *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr;
return true;
}
bool Serializer::get64 (uint64& o, int offset) const
{
if ((offset + 8) > mData.size ()) return false;
const unsigned char* ptr = &mData[offset];
o = *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr++;
o <<= 8;
o |= *ptr;
return true;
}
bool Serializer::get128 (uint128& o, int offset) const
{
if ((offset + (128 / 8)) > mData.size ()) return false;
memcpy (o.begin (), & (mData.front ()) + offset, (128 / 8));
return true;
}
bool Serializer::get160 (uint160& o, int offset) const
{
if ((offset + (160 / 8)) > mData.size ()) return false;
memcpy (o.begin (), & (mData.front ()) + offset, (160 / 8));
return true;
}
bool Serializer::get256 (uint256& o, int offset) const
{
if ((offset + (256 / 8)) > mData.size ()) return false;
memcpy (o.begin (), & (mData.front ()) + offset, (256 / 8));
return true;
}
uint256 Serializer::get256 (int offset) const
{
uint256 ret;
if ((offset + (256 / 8)) > mData.size ()) return ret;
memcpy (ret.begin (), & (mData.front ()) + offset, (256 / 8));
return ret;
}
int Serializer::addFieldID (int type, int name)
{
int ret = mData.size ();
assert ((type > 0) && (type < 256) && (name > 0) && (name < 256));
if (type < 16)
{
if (name < 16) // common type, common name
mData.push_back (static_cast<unsigned char> ((type << 4) | name));
else
{
// common type, uncommon name
mData.push_back (static_cast<unsigned char> (type << 4));
mData.push_back (static_cast<unsigned char> (name));
}
}
else if (name < 16)
{
// uncommon type, common name
mData.push_back (static_cast<unsigned char> (name));
mData.push_back (static_cast<unsigned char> (type));
}
else
{
// uncommon type, uncommon name
mData.push_back (static_cast<unsigned char> (0));
mData.push_back (static_cast<unsigned char> (type));
mData.push_back (static_cast<unsigned char> (name));
}
return ret;
}
bool Serializer::getFieldID (int& type, int& name, int offset) const
{
if (!get8 (type, offset))
{
WriteLog (lsWARNING, Serializer) << "gFID: unable to get type";
return false;
}
name = type & 15;
type >>= 4;
if (type == 0)
{
// uncommon type
if (!get8 (type, ++offset))
return false;
if ((type == 0) || (type < 16))
{
WriteLog (lsWARNING, Serializer) << "gFID: uncommon type out of range " << type;
return false;
}
}
if (name == 0)
{
// uncommon name
if (!get8 (name, ++offset))
return false;
if ((name == 0) || (name < 16))
{
WriteLog (lsWARNING, Serializer) << "gFID: uncommon name out of range " << name;
return false;
}
}
return true;
}
int Serializer::add8 (unsigned char byte)
{
int ret = mData.size ();
mData.push_back (byte);
return ret;
}
bool Serializer::get8 (int& byte, int offset) const
{
if (offset >= mData.size ()) return false;
byte = mData[offset];
return true;
}
bool Serializer::chop (int bytes)
{
if (bytes > mData.size ()) return false;
mData.resize (mData.size () - bytes);
return true;
}
int Serializer::removeLastByte ()
{
int size = mData.size () - 1;
if (size < 0)
{
assert (false);
return -1;
}
int ret = mData[size];
mData.resize (size);
return ret;
}
bool Serializer::getRaw (Blob& o, int offset, int length) const
{
if ((offset + length) > mData.size ()) return false;
o.assign (mData.begin () + offset, mData.begin () + offset + length);
return true;
}
Blob Serializer::getRaw (int offset, int length) const
{
Blob o;
if ((offset + length) > mData.size ()) return o;
o.assign (mData.begin () + offset, mData.begin () + offset + length);
return o;
}
uint160 Serializer::getRIPEMD160 (int size) const
{
uint160 ret;
if ((size < 0) || (size > mData.size ())) size = mData.size ();
RIPEMD160 (& (mData.front ()), size, (unsigned char*) &ret);
return ret;
}
uint256 Serializer::getSHA256 (int size) const
{
uint256 ret;
if ((size < 0) || (size > mData.size ())) size = mData.size ();
SHA256 (& (mData.front ()), size, (unsigned char*) &ret);
return ret;
}
uint256 Serializer::getSHA512Half (int size) const
{
return getSHA512Half (mData, size);
}
uint256 Serializer::getSHA512Half (Blob const& data, int size)
{
uint256 j[2];
if ((size < 0) || (size > data.size ())) size = data.size ();
SHA512 (& (data.front ()), size, (unsigned char*) j);
return j[0];
}
uint256 Serializer::getSHA512Half (const unsigned char* data, int len)
{
uint256 j[2];
SHA512 (data, len, (unsigned char*) j);
return j[0];
}
uint256 Serializer::getSHA512Half (const std::string& strData)
{
return getSHA512Half (reinterpret_cast<const unsigned char*> (strData.data ()), strData.size ());
}
uint256 Serializer::getPrefixHash (uint32 prefix, const unsigned char* data, int len)
{
char be_prefix[4];
be_prefix[0] = static_cast<unsigned char> (prefix >> 24);
be_prefix[1] = static_cast<unsigned char> ((prefix >> 16) & 0xff);
be_prefix[2] = static_cast<unsigned char> ((prefix >> 8) & 0xff);
be_prefix[3] = static_cast<unsigned char> (prefix & 0xff);
uint256 j[2];
SHA512_CTX ctx;
SHA512_Init (&ctx);
SHA512_Update (&ctx, &be_prefix[0], 4);
SHA512_Update (&ctx, data, len);
SHA512_Final (reinterpret_cast<unsigned char*> (&j[0]), &ctx);
return j[0];
}
bool Serializer::checkSignature (int pubkeyOffset, int signatureOffset) const
{
Blob pubkey, signature;
if (!getRaw (pubkey, pubkeyOffset, 65)) return false;
if (!getRaw (signature, signatureOffset, 72)) return false;
CKey pubCKey;
if (!pubCKey.SetPubKey (pubkey)) return false;
return pubCKey.Verify (getSHA512Half (signatureOffset), signature);
}
bool Serializer::checkSignature (Blob const& signature, CKey& key) const
{
return key.Verify (getSHA512Half (), signature);
}
bool Serializer::makeSignature (Blob& signature, CKey& key) const
{
return key.Sign (getSHA512Half (), signature);
}
bool Serializer::addSignature (CKey& key)
{
Blob signature;
if (!key.Sign (getSHA512Half (), signature)) return false;
assert (signature.size () == 72);
addRaw (signature);
return true;
}
int Serializer::addVL (Blob const& vector)
{
int ret = addRaw (encodeVL (vector.size ()));
addRaw (vector);
assert (mData.size () == (ret + vector.size () + encodeLengthLength (vector.size ())));
return ret;
}
int Serializer::addVL (const void* ptr, int len)
{
int ret = addRaw (encodeVL (len));
if (len)
addRaw (ptr, len);
return ret;
}
int Serializer::addVL (const std::string& string)
{
int ret = addRaw (string.size ());
if (!string.empty ())
addRaw (string.data (), string.size ());
return ret;
}
bool Serializer::getVL (Blob& objectVL, int offset, int& length) const
{
int b1;
if (!get8 (b1, offset++)) return false;
int datLen, lenLen = decodeLengthLength (b1);
try
{
if (lenLen == 1)
datLen = decodeVLLength (b1);
else if (lenLen == 2)
{
int b2;
if (!get8 (b2, offset++)) return false;
datLen = decodeVLLength (b1, b2);
}
else if (lenLen == 3)
{
int b2, b3;
if (!get8 (b2, offset++)) return false;
if (!get8 (b3, offset++)) return false;
datLen = decodeVLLength (b1, b2, b3);
}
else return false;
}
catch (...)
{
return false;
}
length = lenLen + datLen;
return getRaw (objectVL, offset, datLen);
}
bool Serializer::getVLLength (int& length, int offset) const
{
int b1;
if (!get8 (b1, offset++)) return false;
int lenLen = decodeLengthLength (b1);
try
{
if (lenLen == 1)
length = decodeVLLength (b1);
else if (lenLen == 2)
{
int b2;
if (!get8 (b2, offset++)) return false;
length = decodeVLLength (b1, b2);
}
else if (lenLen == 3)
{
int b2, b3;
if (!get8 (b2, offset++)) return false;
if (!get8 (b3, offset++)) return false;
length = decodeVLLength (b1, b2, b3);
}
else return false;
}
catch (...)
{
return false;
}
return true;
}
Blob Serializer::encodeVL (int length)
{
unsigned char lenBytes[4];
if (length <= 192)
{
lenBytes[0] = static_cast<unsigned char> (length);
return Blob (&lenBytes[0], &lenBytes[1]);
}
else if (length <= 12480)
{
length -= 193;
lenBytes[0] = 193 + static_cast<unsigned char> (length >> 8);
lenBytes[1] = static_cast<unsigned char> (length & 0xff);
return Blob (&lenBytes[0], &lenBytes[2]);
}
else if (length <= 918744)
{
length -= 12481;
lenBytes[0] = 241 + static_cast<unsigned char> (length >> 16);
lenBytes[1] = static_cast<unsigned char> ((length >> 8) & 0xff);
lenBytes[2] = static_cast<unsigned char> (length & 0xff);
return Blob (&lenBytes[0], &lenBytes[3]);
}
else throw std::overflow_error ("lenlen");
}
int Serializer::encodeLengthLength (int length)
{
if (length < 0) throw std::overflow_error ("len<0");
if (length <= 192) return 1;
if (length <= 12480) return 2;
if (length <= 918744) return 3;
throw std::overflow_error ("len>918744");
}
int Serializer::decodeLengthLength (int b1)
{
if (b1 < 0) throw std::overflow_error ("b1<0");
if (b1 <= 192) return 1;
if (b1 <= 240) return 2;
if (b1 <= 254) return 3;
throw std::overflow_error ("b1>254");
}
int Serializer::decodeVLLength (int b1)
{
if (b1 < 0) throw std::overflow_error ("b1<0");
if (b1 > 254) throw std::overflow_error ("b1>254");
return b1;
}
int Serializer::decodeVLLength (int b1, int b2)
{
if (b1 < 193) throw std::overflow_error ("b1<193");
if (b1 > 240) throw std::overflow_error ("b1>240");
return 193 + (b1 - 193) * 256 + b2;
}
int Serializer::decodeVLLength (int b1, int b2, int b3)
{
if (b1 < 241) throw std::overflow_error ("b1<241");
if (b1 > 254) throw std::overflow_error ("b1>254");
return 12481 + (b1 - 241) * 65536 + b2 * 256 + b3;
}
void Serializer::TestSerializer ()
{
Serializer s (64);
}
int SerializerIterator::getBytesLeft ()
{
return mSerializer.size () - mPos;
}
void SerializerIterator::getFieldID (int& type, int& field)
{
if (!mSerializer.getFieldID (type, field, mPos))
throw std::runtime_error ("invalid serializer getFieldID");
++mPos;
if (type >= 16)
++mPos;
if (field >= 16)
++mPos;
}
unsigned char SerializerIterator::get8 ()
{
int val;
if (!mSerializer.get8 (val, mPos)) throw std::runtime_error ("invalid serializer get8");
++mPos;
return val;
}
uint16 SerializerIterator::get16 ()
{
uint16 val;
if (!mSerializer.get16 (val, mPos)) throw std::runtime_error ("invalid serializer get16");
mPos += 16 / 8;
return val;
}
uint32 SerializerIterator::get32 ()
{
uint32 val;
if (!mSerializer.get32 (val, mPos)) throw std::runtime_error ("invalid serializer get32");
mPos += 32 / 8;
return val;
}
uint64 SerializerIterator::get64 ()
{
uint64 val;
if (!mSerializer.get64 (val, mPos)) throw std::runtime_error ("invalid serializer get64");
mPos += 64 / 8;
return val;
}
uint128 SerializerIterator::get128 ()
{
uint128 val;
if (!mSerializer.get128 (val, mPos)) throw std::runtime_error ("invalid serializer get128");
mPos += 128 / 8;
return val;
}
uint160 SerializerIterator::get160 ()
{
uint160 val;
if (!mSerializer.get160 (val, mPos)) throw std::runtime_error ("invalid serializer get160");
mPos += 160 / 8;
return val;
}
uint256 SerializerIterator::get256 ()
{
uint256 val;
if (!mSerializer.get256 (val, mPos)) throw std::runtime_error ("invalid serializer get256");
mPos += 256 / 8;
return val;
}
Blob SerializerIterator::getVL ()
{
int length;
Blob vl;
if (!mSerializer.getVL (vl, mPos, length)) throw std::runtime_error ("invalid serializer getVL");
mPos += length;
return vl;
}
Blob SerializerIterator::getRaw (int iLength)
{
int iPos = mPos;
mPos += iLength;
return mSerializer.getRaw (iPos, iLength);
}
//------------------------------------------------------------------------------
class SerializerTests : public UnitTest
{
public:
SerializerTests () : UnitTest ("Serializer", "ripple")
{
}
void runTest ()
{
beginTestCase ("hash");
Serializer s1;
s1.add32 (3);
s1.add256 (uint256 ());
Serializer s2;
s2.add32 (0x12345600);
s2.addRaw (s1.peekData ());
expect (s1.getPrefixHash (0x12345600) == s2.getSHA512Half ());
}
};
static SerializerTests serializerTests;

View File

@@ -0,0 +1,282 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_SERIALIZER_H
#define RIPPLE_SERIALIZER_H
class CKey; // forward declaration
class Serializer
{
public:
typedef boost::shared_ptr<Serializer> pointer;
protected:
Blob mData;
public:
Serializer (int n = 256)
{
mData.reserve (n);
}
Serializer (Blob const& data) : mData (data)
{
;
}
Serializer (const std::string& data) : mData (data.data (), (data.data ()) + data.size ())
{
;
}
Serializer (Blob ::iterator begin, Blob ::iterator end) :
mData (begin, end)
{
;
}
Serializer (Blob ::const_iterator begin, Blob ::const_iterator end) :
mData (begin, end)
{
;
}
// assemble functions
int add8 (unsigned char byte);
int add16 (uint16);
int add32 (uint32); // ledger indexes, account sequence, timestamps
int add64 (uint64); // native currency amounts
int add128 (const uint128&); // private key generators
int add160 (const uint160&); // account names, hankos
int add256 (uint256 const& ); // transaction and ledger hashes
int addRaw (Blob const& vector);
int addRaw (const void* ptr, int len);
int addRaw (const Serializer& s);
int addZeros (size_t uBytes);
int addVL (Blob const& vector);
int addVL (const std::string& string);
int addVL (const void* ptr, int len);
// disassemble functions
bool get8 (int&, int offset) const;
bool get8 (unsigned char&, int offset) const;
bool get16 (uint16&, int offset) const;
bool get32 (uint32&, int offset) const;
bool get64 (uint64&, int offset) const;
bool get128 (uint128&, int offset) const;
bool get160 (uint160&, int offset) const;
bool get256 (uint256&, int offset) const;
uint256 get256 (int offset) const;
bool getRaw (Blob&, int offset, int length) const;
Blob getRaw (int offset, int length) const;
bool getVL (Blob& objectVL, int offset, int& length) const;
bool getVLLength (int& length, int offset) const;
bool getFieldID (int& type, int& name, int offset) const;
int addFieldID (int type, int name);
int addFieldID (SerializedTypeID type, int name)
{
return addFieldID (static_cast<int> (type), name);
}
// normal hash functions
uint160 getRIPEMD160 (int size = -1) const;
uint256 getSHA256 (int size = -1) const;
uint256 getSHA512Half (int size = -1) const;
static uint256 getSHA512Half (Blob const& data, int size = -1);
static uint256 getSHA512Half (const unsigned char* data, int len);
static uint256 getSHA512Half (const std::string& strData);
// prefix hash functions
static uint256 getPrefixHash (uint32 prefix, const unsigned char* data, int len);
uint256 getPrefixHash (uint32 prefix) const
{
return getPrefixHash (prefix, & (mData.front ()), mData.size ());
}
static uint256 getPrefixHash (uint32 prefix, Blob const& data)
{
return getPrefixHash (prefix, & (data.front ()), data.size ());
}
static uint256 getPrefixHash (uint32 prefix, const std::string& strData)
{
return getPrefixHash (prefix, reinterpret_cast<const unsigned char*> (strData.data ()), strData.size ());
}
// totality functions
Blob const& peekData () const
{
return mData;
}
Blob getData () const
{
return mData;
}
Blob& modData ()
{
return mData;
}
int getCapacity () const
{
return mData.capacity ();
}
int getDataLength () const
{
return mData.size ();
}
const void* getDataPtr () const
{
return &mData.front ();
}
void* getDataPtr ()
{
return &mData.front ();
}
int getLength () const
{
return mData.size ();
}
std::string getString () const
{
return std::string (static_cast<const char*> (getDataPtr ()), size ());
}
void secureErase ()
{
memset (& (mData.front ()), 0, mData.size ());
erase ();
}
void erase ()
{
mData.clear ();
}
int removeLastByte ();
bool chop (int num);
// vector-like functions
Blob ::iterator begin ()
{
return mData.begin ();
}
Blob ::iterator end ()
{
return mData.end ();
}
Blob ::const_iterator begin () const
{
return mData.begin ();
}
Blob ::const_iterator end () const
{
return mData.end ();
}
Blob ::size_type size () const
{
return mData.size ();
}
void reserve (size_t n)
{
mData.reserve (n);
}
void resize (size_t n)
{
mData.resize (n);
}
size_t capacity () const
{
return mData.capacity ();
}
bool operator== (Blob const& v)
{
return v == mData;
}
bool operator!= (Blob const& v)
{
return v != mData;
}
bool operator== (const Serializer& v)
{
return v.mData == mData;
}
bool operator!= (const Serializer& v)
{
return v.mData != mData;
}
// signature functions
bool checkSignature (int pubkeyOffset, int signatureOffset) const;
bool checkSignature (Blob const& signature, CKey& rkey) const;
bool makeSignature (Blob& signature, CKey& rkey) const;
bool addSignature (CKey& rkey);
// low-level VL length encode/decode functions
static Blob encodeVL (int length);
static int lengthVL (int length)
{
return length + encodeLengthLength (length);
}
static int encodeLengthLength (int length); // length to encode length
static int decodeLengthLength (int b1);
static int decodeVLLength (int b1);
static int decodeVLLength (int b1, int b2);
static int decodeVLLength (int b1, int b2, int b3);
static void TestSerializer ();
};
class SerializerIterator
{
protected:
const Serializer& mSerializer;
int mPos;
public:
// Reference is not const because we don't want to bind to a temporary
SerializerIterator (Serializer& s) : mSerializer (s), mPos (0)
{
;
}
const Serializer& operator* (void)
{
return mSerializer;
}
void reset (void)
{
mPos = 0;
}
void setPos (int p)
{
mPos = p;
}
int getPos (void)
{
return mPos;
}
bool empty ()
{
return mPos == mSerializer.getLength ();
}
int getBytesLeft ();
// get functions throw on error
unsigned char get8 ();
uint16 get16 ();
uint32 get32 ();
uint64 get64 ();
uint128 get128 ();
uint160 get160 ();
uint256 get256 ();
void getFieldID (int& type, int& field);
Blob getRaw (int iLength);
Blob getVL ();
};
#endif
// vim:ts=4

View File

@@ -0,0 +1,136 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
bool transResultInfo (TER terCode, std::string& strToken, std::string& strHuman)
{
static struct
{
TER terCode;
const char* cpToken;
const char* cpHuman;
} transResultInfoA[] =
{
{ tecCLAIM, "tecCLAIM", "Fee claimed. Sequence used. No action." },
{ tecDIR_FULL, "tecDIR_FULL", "Can not add entry to full directory." },
{ tecFAILED_PROCESSING, "tecFAILED_PROCESSING", "Failed to correctly process transaction." },
{ tecINSUF_RESERVE_LINE, "tecINSUF_RESERVE_LINE", "Insufficient reserve to add trust line." },
{ tecINSUF_RESERVE_OFFER, "tecINSUF_RESERVE_OFFER", "Insufficient reserve to create offer." },
{ tecNO_DST, "tecNO_DST", "Destination does not exist. Send XRP to create it." },
{ tecNO_DST_INSUF_XRP, "tecNO_DST_INSUF_XRP", "Destination does not exist. Too little XRP sent to create it." },
{ tecNO_LINE_INSUF_RESERVE, "tecNO_LINE_INSUF_RESERVE", "No such line. Too little reserve to create it." },
{ tecNO_LINE_REDUNDANT, "tecNO_LINE_REDUNDANT", "Can't set non-existant line to default." },
{ tecPATH_DRY, "tecPATH_DRY", "Path could not send partial amount." },
{ tecPATH_PARTIAL, "tecPATH_PARTIAL", "Path could not send full amount." },
{ tecMASTER_DISABLED, "tefMASTER_DISABLED", "Master key is disabled." },
{ tecNO_REGULAR_KEY, "tefNO_REGULAR_KEY", "Regular key is not set." },
{ tecUNFUNDED, "tecUNFUNDED", "One of _ADD, _OFFER, or _SEND. Deprecated." },
{ tecUNFUNDED_ADD, "tecUNFUNDED_ADD", "Insufficient XRP balance for WalletAdd." },
{ tecUNFUNDED_OFFER, "tecUNFUNDED_OFFER", "Insufficient balance to fund created offer." },
{ tecUNFUNDED_PAYMENT, "tecUNFUNDED_PAYMENT", "Insufficient XRP balance to send." },
{ tecOWNERS, "tecOWNERS", "Non-zero owner count." },
{ tefFAILURE, "tefFAILURE", "Failed to apply." },
{ tefALREADY, "tefALREADY", "The exact transaction was already in this ledger." },
{ tefBAD_ADD_AUTH, "tefBAD_ADD_AUTH", "Not authorized to add account." },
{ tefBAD_AUTH, "tefBAD_AUTH", "Transaction's public key is not authorized." },
{ tefBAD_CLAIM_ID, "tefBAD_CLAIM_ID", "Malformed: Bad claim id." },
{ tefBAD_GEN_AUTH, "tefBAD_GEN_AUTH", "Not authorized to claim generator." },
{ tefBAD_LEDGER, "tefBAD_LEDGER", "Ledger in unexpected state." },
{ tefCLAIMED, "tefCLAIMED", "Can not claim a previously claimed account." },
{ tefCREATED, "tefCREATED", "Can't add an already created account." },
{ tefDST_TAG_NEEDED, "tefDST_TAG_NEEDED", "Destination tag required." },
{ tefEXCEPTION, "tefEXCEPTION", "Unexpected program state." },
{ tefGEN_IN_USE, "tefGEN_IN_USE", "Generator already in use." },
{ tefINTERNAL, "tefINTERNAL", "Internal error." },
{ tefNO_AUTH_REQUIRED, "tefNO_AUTH_REQUIRED", "Auth is not required." },
{ tefPAST_SEQ, "tefPAST_SEQ", "This sequence number has already past." },
{ tefWRONG_PRIOR, "tefWRONG_PRIOR", "This previous transaction does not match." },
{ tefMASTER_DISABLED, "tefMASTER_DISABLED", "Master key is disabled." },
{ telLOCAL_ERROR, "telLOCAL_ERROR", "Local failure." },
{ telBAD_DOMAIN, "telBAD_DOMAIN", "Domain too long." },
{ telBAD_PATH_COUNT, "telBAD_PATH_COUNT", "Malformed: Too many paths." },
{ telBAD_PUBLIC_KEY, "telBAD_PUBLIC_KEY", "Public key too long." },
{ telFAILED_PROCESSING, "telFAILED_PROCESSING", "Failed to correctly process transaction." },
{ telINSUF_FEE_P, "telINSUF_FEE_P", "Fee insufficient." },
{ telNO_DST_PARTIAL, "telNO_DST_PARTIAL", "Partial payment to create account not allowed." },
{ temMALFORMED, "temMALFORMED", "Malformed transaction." },
{ temBAD_AMOUNT, "temBAD_AMOUNT", "Can only send positive amounts." },
{ temBAD_AUTH_MASTER, "temBAD_AUTH_MASTER", "Auth for unclaimed account needs correct master key." },
{ temBAD_CURRENCY, "temBAD_CURRENCY", "Malformed: Bad currency." },
{ temBAD_FEE, "temBAD_FEE", "Invalid fee, negative or not XRP." },
{ temBAD_EXPIRATION, "temBAD_EXPIRATION", "Malformed: Bad expiration." },
{ temBAD_ISSUER, "temBAD_ISSUER", "Malformed: Bad issuer." },
{ temBAD_LIMIT, "temBAD_LIMIT", "Limits must be non-negative." },
{ temBAD_OFFER, "temBAD_OFFER", "Malformed: Bad offer." },
{ temBAD_PATH, "temBAD_PATH", "Malformed: Bad path." },
{ temBAD_PATH_LOOP, "temBAD_PATH_LOOP", "Malformed: Loop in path." },
{ temBAD_PUBLISH, "temBAD_PUBLISH", "Malformed: Bad publish." },
{ temBAD_SIGNATURE, "temBAD_SIGNATURE", "Malformed: Bad signature." },
{ temBAD_SRC_ACCOUNT, "temBAD_SRC_ACCOUNT", "Malformed: Bad source account." },
{ temBAD_TRANSFER_RATE, "temBAD_TRANSFER_RATE", "Malformed: Transfer rate must be >= 1.0" },
{ temBAD_SEQUENCE, "temBAD_SEQUENCE", "Malformed: Sequence is not in the past." },
{ temBAD_SEND_XRP_LIMIT, "temBAD_SEND_XRP_LIMIT", "Malformed: Limit quality is not allowed for XRP to XRP." },
{ temBAD_SEND_XRP_MAX, "temBAD_SEND_XRP_MAX", "Malformed: Send max is not allowed for XRP to XRP." },
{ temBAD_SEND_XRP_NO_DIRECT, "temBAD_SEND_XRP_NO_DIRECT", "Malformed: No Ripple direct is not allowed for XRP to XRP." },
{ temBAD_SEND_XRP_PARTIAL, "temBAD_SEND_XRP_PARTIAL", "Malformed: Partial payment is not allowed for XRP to XRP." },
{ temBAD_SEND_XRP_PATHS, "temBAD_SEND_XRP_PATHS", "Malformed: Paths are not allowed for XRP to XRP." },
{ temDST_IS_SRC, "temDST_IS_SRC", "Destination may not be source." },
{ temDST_NEEDED, "temDST_NEEDED", "Destination not specified." },
{ temINVALID, "temINVALID", "The transaction is ill-formed." },
{ temINVALID_FLAG, "temINVALID_FLAG", "The transaction has an invalid flag." },
{ temREDUNDANT, "temREDUNDANT", "Sends same currency to self." },
{ temREDUNDANT_SEND_MAX, "temREDUNDANT_SEND_MAX", "Send max is redundant." },
{ temRIPPLE_EMPTY, "temRIPPLE_EMPTY", "PathSet with no paths." },
{ temUNCERTAIN, "temUNCERTAIN", "In process of determining result. Never returned." },
{ temUNKNOWN, "temUNKNOWN", "The transactions requires logic not implemented yet." },
{ terRETRY, "terRETRY", "Retry transaction." },
{ terFUNDS_SPENT, "terFUNDS_SPENT", "Can't set password, password set funds already spent." },
{ terINSUF_FEE_B, "terINSUF_FEE_B", "Account balance can't pay fee." },
{ terLAST, "terLAST", "Process last." },
{ terNO_ACCOUNT, "terNO_ACCOUNT", "The source account does not exist." },
{ terNO_AUTH, "terNO_AUTH", "Not authorized to hold IOUs." },
{ terNO_LINE, "terNO_LINE", "No such line." },
{ terPRE_SEQ, "terPRE_SEQ", "Missing/inapplicable prior transaction." },
{ terOWNERS, "terOWNERS", "Non-zero owner count." },
{ tesSUCCESS, "tesSUCCESS", "The transaction was applied." },
};
int iIndex = NUMBER (transResultInfoA);
while (iIndex-- && transResultInfoA[iIndex].terCode != terCode)
;
if (iIndex >= 0)
{
strToken = transResultInfoA[iIndex].cpToken;
strHuman = transResultInfoA[iIndex].cpHuman;
}
return iIndex >= 0;
}
std::string transToken (TER terCode)
{
std::string strToken;
std::string strHuman;
return transResultInfo (terCode, strToken, strHuman) ? strToken : "-";
}
std::string transHuman (TER terCode)
{
std::string strToken;
std::string strHuman;
return transResultInfo (terCode, strToken, strHuman) ? strHuman : "-";
}
// vim:ts=4

View File

@@ -0,0 +1,170 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_TER_H
#define RIPPLE_TER_H
// VFALCO TODO do not use auto-incrementing. Explicitly assign each
// constant so there is no possibility of someone coming in
// and screwing it up.
//
// VFALCO TODO consider renaming TER to TxErr or TxResult for clarity.
//
enum TER // aka TransactionEngineResult
{
// Note: Range is stable. Exact numbers are currently unstable. Use tokens.
// -399 .. -300: L Local error (transaction fee inadequate, exceeds local limit)
// Only valid during non-consensus processing.
// Implications:
// - Not forwarded
// - No fee check
telLOCAL_ERROR = -399,
telBAD_DOMAIN, // VFALCO TODO should read "telBAD_DOMAIN = -398," etc...
telBAD_PATH_COUNT,
telBAD_PUBLIC_KEY,
telFAILED_PROCESSING,
telINSUF_FEE_P,
telNO_DST_PARTIAL,
// -299 .. -200: M Malformed (bad signature)
// Causes:
// - Transaction corrupt.
// Implications:
// - Not applied
// - Not forwarded
// - Reject
// - Can not succeed in any imagined ledger.
temMALFORMED = -299,
temBAD_AMOUNT,
temBAD_AUTH_MASTER,
temBAD_CURRENCY,
temBAD_FEE,
temBAD_EXPIRATION,
temBAD_ISSUER,
temBAD_LIMIT,
temBAD_OFFER,
temBAD_PATH,
temBAD_PATH_LOOP,
temBAD_PUBLISH,
temBAD_TRANSFER_RATE,
temBAD_SEND_XRP_LIMIT,
temBAD_SEND_XRP_MAX,
temBAD_SEND_XRP_NO_DIRECT,
temBAD_SEND_XRP_PARTIAL,
temBAD_SEND_XRP_PATHS,
temBAD_SIGNATURE,
temBAD_SRC_ACCOUNT,
temBAD_SEQUENCE,
temDST_IS_SRC,
temDST_NEEDED,
temINVALID,
temINVALID_FLAG,
temREDUNDANT,
temREDUNDANT_SEND_MAX,
temRIPPLE_EMPTY,
temUNCERTAIN, // An intermediate result used internally, should never be returned.
temUNKNOWN,
// -199 .. -100: F Failure (sequence number previously used)
// Causes:
// - Transaction cannot succeed because of ledger state.
// - Unexpected ledger state.
// - C++ exception.
// Implications:
// - Not applied
// - Not forwarded
// - Could succeed in an imagined ledger.
tefFAILURE = -199,
tefALREADY,
tefBAD_ADD_AUTH,
tefBAD_AUTH,
tefBAD_CLAIM_ID,
tefBAD_GEN_AUTH,
tefBAD_LEDGER,
tefCLAIMED,
tefCREATED,
tefDST_TAG_NEEDED,
tefEXCEPTION,
tefGEN_IN_USE,
tefINTERNAL,
tefNO_AUTH_REQUIRED, // Can't set auth if auth is not required.
tefPAST_SEQ,
tefWRONG_PRIOR,
tefMASTER_DISABLED,
// -99 .. -1: R Retry (sequence too high, no funds for txn fee, originating account non-existent)
// Causes:
// - Prior application of another, possibly non-existant, another transaction could allow this transaction to succeed.
// Implications:
// - Not applied
// - Not forwarded
// - Might succeed later
// - Hold
// - Makes hole in sequence which jams transactions.
terRETRY = -99,
terFUNDS_SPENT, // This is a free transaction, therefore don't burden network.
terINSUF_FEE_B, // Can't pay fee, therefore don't burden network.
terNO_ACCOUNT, // Can't pay fee, therefore don't burden network.
terNO_AUTH, // Not authorized to hold IOUs.
terNO_LINE, // Internal flag.
terOWNERS, // Can't succeed with non-zero owner count.
terPRE_SEQ, // Can't pay fee, no point in forwarding, therefore don't burden network.
terLAST, // Process after all other transactions
// 0: S Success (success)
// Causes:
// - Success.
// Implications:
// - Applied
// - Forwarded
tesSUCCESS = 0,
// 100 .. 129 C Claim fee only (ripple transaction with no good paths, pay to non-existent account, no path)
// Causes:
// - Success, but does not achieve optimal result.
// - Invalid transaction or no effect, but claim fee to use the sequence number.
// Implications:
// - Applied
// - Forwarded
// Only allowed as a return code of appliedTransaction when !tapRetry. Otherwise, treated as terRETRY.
//
// DO NOT CHANGE THESE NUMBERS: They appear in ledger meta data.
tecCLAIM = 100,
tecPATH_PARTIAL = 101,
tecUNFUNDED_ADD = 102,
tecUNFUNDED_OFFER = 103,
tecUNFUNDED_PAYMENT = 104,
tecFAILED_PROCESSING = 105,
tecDIR_FULL = 121,
tecINSUF_RESERVE_LINE = 122,
tecINSUF_RESERVE_OFFER = 123,
tecNO_DST = 124,
tecNO_DST_INSUF_XRP = 125,
tecNO_LINE_INSUF_RESERVE = 126,
tecNO_LINE_REDUNDANT = 127,
tecPATH_DRY = 128,
tecUNFUNDED = 129, // Deprecated, old ambiguous unfunded.
tecMASTER_DISABLED = 130,
tecNO_REGULAR_KEY = 131,
tecOWNERS = 132,
};
// VFALCO TODO change these to normal functions.
#define isTelLocal(x) ((x) >= telLOCAL_ERROR && (x) < temMALFORMED)
#define isTemMalformed(x) ((x) >= temMALFORMED && (x) < tefFAILURE)
#define isTefFailure(x) ((x) >= tefFAILURE && (x) < terRETRY)
#define isTerRetry(x) ((x) >= terRETRY && (x) < tesSUCCESS)
#define isTesSuccess(x) ((x) == tesSUCCESS)
#define isTecClaim(x) ((x) >= tecCLAIM)
// VFALCO TODO group these into a shell class along with the defines above.
extern bool transResultInfo (TER terCode, std::string& strToken, std::string& strHuman);
extern std::string transToken (TER terCode);
extern std::string transHuman (TER terCode);
#endif
// vim:ts=4

View File

@@ -0,0 +1,63 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_TXFLAGS_H
#define RIPPLE_TXFLAGS_H
//
// Transaction flags.
//
/** Transaction flags.
These flags modify the behavior of an operation.
@note Changing these will create a hard fork
@ingroup protocol
*/
class TxFlag
{
public:
static uint32 const requireDestTag = 0x00010000;
};
// VFALCO TODO Move all flags into this container after some study.
// AccountSet flags:
// VFALCO TODO Javadoc comment every one of these constants
//const uint32 TxFlag::requireDestTag = 0x00010000;
const uint32 tfOptionalDestTag = 0x00020000;
const uint32 tfRequireAuth = 0x00040000;
const uint32 tfOptionalAuth = 0x00080000;
const uint32 tfDisallowXRP = 0x00100000;
const uint32 tfAllowXRP = 0x00200000;
const uint32 tfAccountSetMask = ~ (TxFlag::requireDestTag | tfOptionalDestTag
| tfRequireAuth | tfOptionalAuth
| tfDisallowXRP | tfAllowXRP);
// AccountSet SetFlag/ClearFlag values
const uint32 asfRequireDest = 1;
const uint32 asfRequireAuth = 2;
const uint32 asfDisallowXRP = 3;
const uint32 asfDisableMaster = 4;
// OfferCreate flags:
const uint32 tfPassive = 0x00010000;
const uint32 tfImmediateOrCancel = 0x00020000;
const uint32 tfFillOrKill = 0x00040000;
const uint32 tfSell = 0x00080000;
const uint32 tfOfferCreateMask = ~ (tfPassive | tfImmediateOrCancel | tfFillOrKill | tfSell);
// Payment flags:
const uint32 tfNoRippleDirect = 0x00010000;
const uint32 tfPartialPayment = 0x00020000;
const uint32 tfLimitQuality = 0x00040000;
const uint32 tfPaymentMask = ~ (tfPartialPayment | tfLimitQuality | tfNoRippleDirect);
// TrustSet flags:
const uint32 tfSetfAuth = 0x00010000;
const uint32 tfTrustSetMask = ~ (tfSetfAuth);
#endif

View File

@@ -0,0 +1,97 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
TxFormats::TxFormats ()
: SharedSingleton <TxFormats> (SingletonLifetime::persistAfterCreation)
{
add ("AccountSet", ttACCOUNT_SET)
<< SOElement (sfEmailHash, SOE_OPTIONAL)
<< SOElement (sfWalletLocator, SOE_OPTIONAL)
<< SOElement (sfWalletSize, SOE_OPTIONAL)
<< SOElement (sfMessageKey, SOE_OPTIONAL)
<< SOElement (sfDomain, SOE_OPTIONAL)
<< SOElement (sfTransferRate, SOE_OPTIONAL)
<< SOElement (sfSetFlag, SOE_OPTIONAL)
<< SOElement (sfClearFlag, SOE_OPTIONAL)
;
add ("TrustSet", ttTRUST_SET)
<< SOElement (sfLimitAmount, SOE_OPTIONAL)
<< SOElement (sfQualityIn, SOE_OPTIONAL)
<< SOElement (sfQualityOut, SOE_OPTIONAL)
;
add ("OfferCreate", ttOFFER_CREATE)
<< SOElement (sfTakerPays, SOE_REQUIRED)
<< SOElement (sfTakerGets, SOE_REQUIRED)
<< SOElement (sfExpiration, SOE_OPTIONAL)
<< SOElement (sfOfferSequence, SOE_OPTIONAL)
;
add ("OfferCancel", ttOFFER_CANCEL)
<< SOElement (sfOfferSequence, SOE_REQUIRED)
;
add ("SetRegularKey", ttREGULAR_KEY_SET)
<< SOElement (sfRegularKey, SOE_OPTIONAL)
;
add ("Payment", ttPAYMENT)
<< SOElement (sfDestination, SOE_REQUIRED)
<< SOElement (sfAmount, SOE_REQUIRED)
<< SOElement (sfSendMax, SOE_OPTIONAL)
<< SOElement (sfPaths, SOE_DEFAULT)
<< SOElement (sfInvoiceID, SOE_OPTIONAL)
<< SOElement (sfDestinationTag, SOE_OPTIONAL)
;
add ("Contract", ttCONTRACT)
<< SOElement (sfExpiration, SOE_REQUIRED)
<< SOElement (sfBondAmount, SOE_REQUIRED)
<< SOElement (sfStampEscrow, SOE_REQUIRED)
<< SOElement (sfRippleEscrow, SOE_REQUIRED)
<< SOElement (sfCreateCode, SOE_OPTIONAL)
<< SOElement (sfFundCode, SOE_OPTIONAL)
<< SOElement (sfRemoveCode, SOE_OPTIONAL)
<< SOElement (sfExpireCode, SOE_OPTIONAL)
;
add ("RemoveContract", ttCONTRACT_REMOVE)
<< SOElement (sfTarget, SOE_REQUIRED)
;
add ("EnableFeature", ttFEATURE)
<< SOElement (sfFeature, SOE_REQUIRED)
;
add ("SetFee", ttFEE)
<< SOElement (sfBaseFee, SOE_REQUIRED)
<< SOElement (sfReferenceFeeUnits, SOE_REQUIRED)
<< SOElement (sfReserveBase, SOE_REQUIRED)
<< SOElement (sfReserveIncrement, SOE_REQUIRED)
;
}
void TxFormats::addCommonFields (Item& item)
{
item
<< SOElement(sfTransactionType, SOE_REQUIRED)
<< SOElement(sfFlags, SOE_OPTIONAL)
<< SOElement(sfSourceTag, SOE_OPTIONAL)
<< SOElement(sfAccount, SOE_REQUIRED)
<< SOElement(sfSequence, SOE_REQUIRED)
<< SOElement(sfPreviousTxnID, SOE_OPTIONAL)
<< SOElement(sfFee, SOE_REQUIRED)
<< SOElement(sfOperationLimit, SOE_OPTIONAL)
<< SOElement(sfSigningPubKey, SOE_REQUIRED)
<< SOElement(sfTxnSignature, SOE_OPTIONAL)
;
}
TxFormats* TxFormats::createInstance ()
{
return new TxFormats;
}

View File

@@ -0,0 +1,57 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_TXFORMATS_H_INCLUDED
#define RIPPLE_TXFORMATS_H_INCLUDED
/** Transaction type identifiers.
These are part of the binary message format.
@ingroup protocol
*/
enum TxType
{
ttINVALID = -1,
ttPAYMENT = 0,
ttCLAIM = 1, // open
ttWALLET_ADD = 2,
ttACCOUNT_SET = 3,
ttPASSWORD_FUND = 4, // open
ttREGULAR_KEY_SET = 5,
ttNICKNAME_SET = 6, // open
ttOFFER_CREATE = 7,
ttOFFER_CANCEL = 8,
ttCONTRACT = 9,
ttCONTRACT_REMOVE = 10, // can we use the same msg as offer cancel
ttTRUST_SET = 20,
ttFEATURE = 100,
ttFEE = 101,
};
/** Manages the list of known transaction formats.
*/
class TxFormats
: public KnownFormats <TxType>
, public SharedSingleton <TxFormats>
{
private:
/** Create the object.
This will load the object will all the known transaction formats.
*/
TxFormats ();
void addCommonFields (Item& item);
public:
static TxFormats* createInstance ();
};
#endif

View File

@@ -0,0 +1,83 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#include "BeastConfig.h"
#include "ripple_data.h"
//#include <cmath>
#include "beast/modules/beast_core/system/BeforeBoost.h" // must come first
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/algorithm/string/trim.hpp>
#include <boost/algorithm/string/classification.hpp>
#include <boost/format.hpp>
#include <boost/foreach.hpp>
#include <boost/functional/hash.hpp>
#include <boost/range/adaptor/copied.hpp>
#include <boost/regex.hpp>
#include <boost/unordered_map.hpp>
#include <boost/thread/mutex.hpp>
#include <openssl/ec.h>
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/pem.h>
#include <openssl/hmac.h>
//#include <openssl/rand.h> // includes <windows.h> and causes errors due to #define GetMessage
#include <openssl/err.h>
// VFALCO TODO fix these warnings!
#if BEAST_MSVC
#pragma warning (push)
#pragma warning (disable: 4018) // signed/unsigned mismatch
#endif
#ifdef min
#undef min
#endif
namespace ripple
{
#include "crypto/ripple_Base58.h" // for RippleAddress
#include "crypto/ripple_CKey.h" // needs RippleAddress VFALCO TODO remove this dependency cycle
#include "crypto/ripple_RFC1751.h"
#include "crypto/ripple_CBigNum.cpp"
#include "crypto/ripple_CKey.cpp"
#include "crypto/ripple_CKeyDeterministic.cpp"
#include "crypto/ripple_CKeyECIES.cpp"
#include "crypto/ripple_Base58.cpp"
#include "crypto/ripple_Base58Data.cpp"
#include "crypto/ripple_RFC1751.cpp"
#include "protocol/BuildInfo.cpp"
#include "protocol/ripple_FieldNames.cpp"
#include "protocol/ripple_LedgerFormats.cpp"
#include "protocol/ripple_PackedMessage.cpp"
#include "protocol/ripple_RippleAddress.cpp"
#include "protocol/ripple_SerializedTypes.cpp"
#include "protocol/ripple_Serializer.cpp"
#include "protocol/ripple_SerializedObjectTemplate.cpp"
#include "protocol/ripple_SerializedObject.cpp"
#include "protocol/ripple_TER.cpp"
#include "protocol/ripple_TxFormats.cpp"
// These are for STAmount
static const uint64 tenTo14 = 100000000000000ull;
static const uint64 tenTo14m1 = tenTo14 - 1;
static const uint64 tenTo17 = tenTo14 * 1000;
static const uint64 tenTo17m1 = tenTo17 - 1;
#include "protocol/ripple_STAmount.cpp"
#include "protocol/ripple_STAmountRound.cpp"
}
#if BEAST_MSVC
#pragma warning (pop)
#endif

View File

@@ -0,0 +1,112 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
/** Include this to get the @ref ripple_data module.
@file ripple_data.h
@ingroup ripple_data
*/
/** Ripple specific data representation and manipulation.
These form the building blocks of Ripple data.
@defgroup ripple_data
*/
#ifndef RIPPLE_DATA_RIPPLEHEADER
#define RIPPLE_DATA_RIPPLEHEADER
// VFALCO TODO try to reduce these dependencies
#include "../ripple_basics/ripple_basics.h"
// VFALCO TODO figure out a good place for this file, perhaps give it some
// additional hierarchy via directories.
#include "ripple.pb.h"
namespace ripple
{
#include "crypto/ripple_CBigNum.h"
#include "crypto/ripple_Base58.h" // VFALCO TODO Can be moved to .cpp if we clean up setAlphabet stuff
#include "crypto/ripple_Base58Data.h"
#include "crypto/ripple_RFC1751.h"
#include "protocol/BuildInfo.h"
#include "protocol/ripple_FieldNames.h"
#include "protocol/ripple_HashPrefix.h"
#include "protocol/ripple_PackedMessage.h"
#include "protocol/ripple_Protocol.h"
#include "protocol/ripple_RippleAddress.h"
#include "protocol/ripple_RippleSystem.h"
#include "protocol/ripple_Serializer.h" // needs CKey
#include "protocol/ripple_TER.h"
#include "protocol/ripple_SerializedTypes.h" // needs Serializer, TER
#include "protocol/ripple_SerializedObjectTemplate.h"
#include "protocol/ripple_KnownFormats.h"
#include "protocol/ripple_LedgerFormats.h" // needs SOTemplate from SerializedObjectTemplate
#include "protocol/ripple_TxFormats.h"
#include "protocol/ripple_SerializedObject.h"
#include "protocol/ripple_TxFlags.h"
#include "utility/ripple_UptimeTimerAdapter.h"
}
//------------------------------------------------------------------------------
namespace boost
{
template <>
struct range_mutable_iterator <ripple::STPath>
{
typedef std::vector <ripple::STPathElement>::iterator type;
};
template <>
struct range_const_iterator <ripple::STPath>
{
typedef std::vector <ripple::STPathElement>::const_iterator type;
};
template <>
struct range_mutable_iterator <ripple::STPathSet>
{
typedef std::vector <ripple::STPath>::iterator type;
};
template <>
struct range_const_iterator <ripple::STPathSet>
{
typedef std::vector <ripple::STPath>::const_iterator type;
};
template <>
struct range_mutable_iterator <ripple::STObject>
{
typedef ripple::STObject::iterator type;
};
template <>
struct range_const_iterator <ripple::STObject>
{
typedef ripple::STObject::const_iterator type;
};
template <>
struct range_mutable_iterator <ripple::STArray>
{
typedef ripple::STArray::iterator type;
};
template <>
struct range_const_iterator <ripple::STArray>
{
typedef ripple::STArray::const_iterator type;
};
}
#endif

View File

@@ -0,0 +1,20 @@
//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
#ifndef RIPPLE_UPTIMETIMERADAPTER_H
#define RIPPLE_UPTIMETIMERADAPTER_H
/** Adapter providing uptime measurements for template classes.
*/
struct UptimeTimerAdapter
{
inline static int getElapsedSeconds ()
{
return UptimeTimer::getInstance ().getElapsedSeconds ();
}
};
#endif