mirror of
https://github.com/XRPLF/rippled.git
synced 2025-11-28 06:55:50 +00:00
Rename beast sources for consistency
This commit is contained in:
387
modules/beast_core/maths/Interval.h
Normal file
387
modules/beast_core/maths/Interval.h
Normal file
@@ -0,0 +1,387 @@
|
||||
//------------------------------------------------------------------------------
|
||||
/*
|
||||
This file is part of Beast: https://github.com/vinniefalco/Beast
|
||||
Copyright 2013, Vinnie Falco <vinnie.falco@gmail.com>
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
//==============================================================================
|
||||
|
||||
#ifndef BEAST_INTERVAL_H_INCLUDED
|
||||
#define BEAST_INTERVAL_H_INCLUDED
|
||||
|
||||
/** A half-open interval.
|
||||
|
||||
This represents the half-open interval [begin, end) over the scalar
|
||||
type of template parameter `Ty`. It may also be considered as the
|
||||
specification of a subset of a 1-dimensional Euclidean space.
|
||||
|
||||
@tparam Ty A scalar numerical type.
|
||||
*/
|
||||
template <class Ty>
|
||||
class Interval
|
||||
{
|
||||
public:
|
||||
typedef Ty value_type;
|
||||
|
||||
/** The empty interval.
|
||||
*/
|
||||
static const Interval none;
|
||||
|
||||
/** Create an uninitialized interval.
|
||||
*/
|
||||
Interval ()
|
||||
{
|
||||
}
|
||||
|
||||
/** Create an interval with the specified values.
|
||||
*/
|
||||
Interval (Ty begin, Ty end)
|
||||
: m_begin (begin)
|
||||
, m_end (end)
|
||||
{
|
||||
}
|
||||
|
||||
/** Create an interval from another interval.
|
||||
*/
|
||||
Interval (Interval const& other)
|
||||
: m_begin (other.m_begin)
|
||||
, m_end (other.m_end)
|
||||
{
|
||||
}
|
||||
|
||||
/** Assign from another interval.
|
||||
|
||||
@param other The interval to assign from.
|
||||
|
||||
@return A reference to this interval.
|
||||
*/
|
||||
Interval& operator= (const Interval& other)
|
||||
{
|
||||
m_begin = other.m_begin;
|
||||
m_end = other.m_end;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Compare an interval for equality.
|
||||
|
||||
Empty intervals are always equal to other empty intervals.
|
||||
|
||||
@param rhs The other interval to compare.
|
||||
|
||||
@return `true` if this interval is equal to the specified interval.
|
||||
*/
|
||||
bool operator== (Interval const& rhs) const
|
||||
{
|
||||
return (empty () && rhs.empty ()) ||
|
||||
(m_begin == rhs.m_begin && m_end == rhs.m_end);
|
||||
}
|
||||
|
||||
/** Compare an interval for inequality.
|
||||
|
||||
@param rhs The other interval to compare.
|
||||
|
||||
@return `true` if this interval is not equal to the specified interval.
|
||||
*/
|
||||
bool operator!= (Interval const& rhs) const
|
||||
{
|
||||
return !this->operator== (rhs);
|
||||
}
|
||||
|
||||
/** Get the starting value of the interval.
|
||||
|
||||
@return The starting point of the interval.
|
||||
*/
|
||||
Ty begin () const
|
||||
{
|
||||
return m_begin;
|
||||
}
|
||||
|
||||
/** Get the ending value of the interval.
|
||||
|
||||
@return The ending point of the interval.
|
||||
*/
|
||||
Ty end () const
|
||||
{
|
||||
return m_end;
|
||||
}
|
||||
|
||||
/** Get the Lebesque measure.
|
||||
|
||||
@return The Lebesque measure.
|
||||
*/
|
||||
Ty length () const
|
||||
{
|
||||
return empty () ? Ty () : (end () - begin ());
|
||||
}
|
||||
|
||||
//Ty count () const { return length (); } // sugar
|
||||
//Ty distance () const { return length (); } // sugar
|
||||
|
||||
/** Determine if the interval is empty.
|
||||
|
||||
@return `true` if the interval is empty.
|
||||
*/
|
||||
bool empty () const
|
||||
{
|
||||
return m_begin >= m_end;
|
||||
}
|
||||
|
||||
/** Determine if the interval is non-empty.
|
||||
|
||||
@return `true` if the interval is not empty.
|
||||
*/
|
||||
bool notEmpty () const
|
||||
{
|
||||
return m_begin < m_end;
|
||||
}
|
||||
|
||||
/** Set the starting point of the interval.
|
||||
|
||||
@param v The starting point.
|
||||
*/
|
||||
void setBegin (Ty v)
|
||||
{
|
||||
m_begin = v;
|
||||
}
|
||||
|
||||
/** Set the ending point of the interval.
|
||||
|
||||
@param v The ending point.
|
||||
*/
|
||||
void setEnd (Ty v)
|
||||
{
|
||||
m_end = v;
|
||||
}
|
||||
|
||||
/** Set the ending point relative to the starting point.
|
||||
|
||||
@param v The length of the resulting interval.
|
||||
*/
|
||||
void setLength (Ty v)
|
||||
{
|
||||
m_end = m_begin + v;
|
||||
}
|
||||
|
||||
/** Determine if a value is contained in the interval.
|
||||
|
||||
@param v The value to check.
|
||||
|
||||
@return `true` if this interval contains `v`.
|
||||
*/
|
||||
bool contains (Ty v) const
|
||||
{
|
||||
return notEmpty () && v >= m_begin && v < m_end;
|
||||
}
|
||||
|
||||
/** Determine if this interval intersects another interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if the intervals intersect.
|
||||
*/
|
||||
template <class To>
|
||||
bool intersects (Interval <To> const& other) const
|
||||
{
|
||||
return notEmpty () && other.notEmpty () &&
|
||||
end () > other.begin () && begin () < other.end ();
|
||||
}
|
||||
|
||||
/** Determine if this interval adjoins another interval.
|
||||
|
||||
An interval is adjoint to another interval if and only if the union of the
|
||||
intervals is a single non-empty half-open subset.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if the intervals are adjoint.
|
||||
*/
|
||||
template <class To>
|
||||
bool adjoins (Interval <To> const& other) const
|
||||
{
|
||||
return (empty () != other.empty ()) ||
|
||||
(notEmpty () && end () >= other.begin ()
|
||||
&& begin () <= other.end ());
|
||||
}
|
||||
|
||||
/** Determine if this interval is disjoint from another interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if the intervals are disjoint.
|
||||
*/
|
||||
bool disjoint (Interval const& other) const
|
||||
{
|
||||
return !intersects (other);
|
||||
}
|
||||
|
||||
/** Determine if this interval is a superset of another interval.
|
||||
|
||||
An interval A is a superset of interval B if B is empty or if A fully
|
||||
contains B.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if this is a superset of `other`.
|
||||
*/
|
||||
template <class To>
|
||||
bool superset_of (Interval <To> const& other) const
|
||||
{
|
||||
return other.empty () ||
|
||||
(notEmpty () && begin () <= other.begin ()
|
||||
&& end () >= other.end ());
|
||||
}
|
||||
|
||||
/** Determine if this interval is a proper superset of another interval.
|
||||
|
||||
An interval A is a proper superset of interval B if A is a superset of
|
||||
B and A is not equal to B.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if this interval is a proper superset of `other`.
|
||||
*/
|
||||
template <class To>
|
||||
bool proper_superset_of (Interval <To> const& other) const
|
||||
{
|
||||
return this->superset_of (other) && this->operator != (other);
|
||||
}
|
||||
|
||||
/** Determine if this interval is a subset of another interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if this interval is a subset of `other`.
|
||||
*/
|
||||
template <class To>
|
||||
bool subset_of (Interval <To> const& other) const
|
||||
{
|
||||
return other.superset_of (*this);
|
||||
}
|
||||
|
||||
/** Determine if this interval is a proper subset of another interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return `true` if this interval is a proper subset of `other`.
|
||||
*/
|
||||
template <class To>
|
||||
bool proper_subset_of (Interval <To> const& other) const
|
||||
{
|
||||
return other.proper_superset_of (*this);
|
||||
}
|
||||
|
||||
/** Return the intersection of this interval with another interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return The intersection of the intervals.
|
||||
*/
|
||||
template <class To>
|
||||
Interval intersection (Interval <To> const& other) const
|
||||
{
|
||||
return Interval (std::max (begin (), other.begin ()),
|
||||
std::min (end (), other.end ()));
|
||||
}
|
||||
|
||||
/** Determine the smallest interval that contains both intervals.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return The simple union of the intervals.
|
||||
*/
|
||||
template <class To>
|
||||
Interval simple_union (Interval <To> const& other) const
|
||||
{
|
||||
return Interval (
|
||||
std::min (other.normalized ().begin (), normalized ().begin ()),
|
||||
std::max (other.normalized ().end (), normalized ().end ()));
|
||||
}
|
||||
|
||||
/** Calculate the single-interval union.
|
||||
|
||||
The result is empty if the union cannot be represented as a
|
||||
single half-open interval.
|
||||
|
||||
@param other The other interval.
|
||||
|
||||
@return The simple union of the intervals.
|
||||
*/
|
||||
template <class To>
|
||||
Interval single_union (Interval <To> const& other) const
|
||||
{
|
||||
if (empty ())
|
||||
return other;
|
||||
|
||||
else if (other.empty ())
|
||||
return *this;
|
||||
|
||||
else if (end () < other.begin () || begin () > other.end ())
|
||||
return none;
|
||||
|
||||
else
|
||||
return Interval (std::min (begin (), other.begin ()),
|
||||
std::max (end (), other.end ()));
|
||||
}
|
||||
|
||||
/** Determine if the interval is correctly ordered.
|
||||
|
||||
@return `true` if the interval is correctly ordered.
|
||||
*/
|
||||
bool normal () const
|
||||
{
|
||||
return end () >= begin ();
|
||||
}
|
||||
|
||||
/** Return a normalized interval.
|
||||
|
||||
@return The normalized interval.
|
||||
*/
|
||||
Interval normalized () const
|
||||
{
|
||||
if (normal ())
|
||||
return *this;
|
||||
else
|
||||
return Interval (end (), begin ());
|
||||
}
|
||||
|
||||
/** Clamp a value to the interval.
|
||||
|
||||
@param v The value to clamp.
|
||||
|
||||
@return The clamped result.
|
||||
*/
|
||||
template <typename Tv>
|
||||
Ty clamp (Tv v) const
|
||||
{
|
||||
// These conditionals are carefully ordered so
|
||||
// that if m_begin == m_end, value is assigned m_begin.
|
||||
if (v > end ())
|
||||
v = end () - (std::numeric_limits <Tv>::is_integer ? 1 :
|
||||
std::numeric_limits <Tv>::epsilon ());
|
||||
|
||||
if (v < begin ())
|
||||
v = begin ();
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
private:
|
||||
Ty m_begin;
|
||||
Ty m_end;
|
||||
};
|
||||
|
||||
template <typename Ty>
|
||||
const Interval<Ty> Interval<Ty>::none = Interval<Ty> (Ty (), Ty ());
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user