Files
clio/tests/unit/rpc/handlers/NFTInfoTests.cpp
Ayaz Salikhov 9c92a2b51b style: Use pre-commit tool and add simple config (#2029)
I started with really simple pre-commit hooks and will add more on top.

Important files:
- `.pre-commit-config.yaml` - the config for pre-commit
- `.github/workflows/pre-commit.yml` - runs pre-commit hooks in branches
and `develop`
- `.github/workflows/pre-commit-autoupdate.yml` - autoupdates pre-commit
hooks once in a month
2025-04-24 17:59:43 +01:00

461 lines
17 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of clio: https://github.com/XRPLF/clio
Copyright (c) 2023, the clio developers.
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include "data/Types.hpp"
#include "rpc/Errors.hpp"
#include "rpc/common/AnyHandler.hpp"
#include "rpc/common/Types.hpp"
#include "rpc/handlers/NFTInfo.hpp"
#include "util/HandlerBaseTestFixture.hpp"
#include "util/TestObject.hpp"
#include <boost/asio/spawn.hpp>
#include <boost/json/parse.hpp>
#include <fmt/core.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <xrpl/basics/Blob.h>
#include <xrpl/basics/base_uint.h>
#include <xrpl/protocol/LedgerHeader.h>
#include <optional>
using namespace rpc;
using namespace data;
namespace json = boost::json;
using namespace testing;
namespace {
constexpr auto kACCOUNT = "rf1BiGeXwwQoi8Z2ueFYTEXSwuJYfV2Jpn";
constexpr auto kLEDGER_HASH = "4BC50C9B0D8515D3EAAE1E74B29A95804346C491EE1A95BF25E4AAB854A6A652";
constexpr auto kNFT_ID = "00010000A7CAD27B688D14BA1A9FA5366554D6ADCF9CE0875B974D9F00000004";
constexpr auto kNFT_ID2 = "00081388319F12E15BCA13E1B933BF4C99C8E1BBC36BD4910A85D52F00000022";
} // namespace
struct RPCNFTInfoHandlerTest : HandlerBaseTest {
RPCNFTInfoHandlerTest()
{
backend_->setRange(10, 30);
}
};
TEST_F(RPCNFTInfoHandlerTest, NonHexLedgerHash)
{
runSpawn([this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_hash": "xxx"
}})",
kNFT_ID
));
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "invalidParams");
EXPECT_EQ(err.at("error_message").as_string(), "ledger_hashMalformed");
});
}
TEST_F(RPCNFTInfoHandlerTest, NonStringLedgerHash)
{
runSpawn([this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_hash": 123
}})",
kNFT_ID
));
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "invalidParams");
EXPECT_EQ(err.at("error_message").as_string(), "ledger_hashNotString");
});
}
TEST_F(RPCNFTInfoHandlerTest, InvalidLedgerIndexString)
{
runSpawn([this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_index": "notvalidated"
}})",
kNFT_ID
));
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "invalidParams");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerIndexMalformed");
});
}
// error case: nft_id invalid format, length is incorrect
TEST_F(RPCNFTInfoHandlerTest, NFTIDInvalidFormat)
{
runSpawn([this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const input = json::parse(R"({
"nft_id": "00080000B4F4AFC5FBCBD76873F18006173D2193467D3EE7"
})");
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "invalidParams");
EXPECT_EQ(err.at("error_message").as_string(), "nft_idMalformed");
});
}
// error case: nft_id invalid format
TEST_F(RPCNFTInfoHandlerTest, NFTIDNotString)
{
runSpawn([this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const input = json::parse(R"({
"nft_id": 12
})");
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "invalidParams");
EXPECT_EQ(err.at("error_message").as_string(), "nft_idNotString");
});
}
// error case ledger non exist via hash
TEST_F(RPCNFTInfoHandlerTest, NonExistLedgerViaLedgerHash)
{
// mock fetchLedgerByHash return empty
ON_CALL(*backend_, fetchLedgerByHash(ripple::uint256{kLEDGER_HASH}, _))
.WillByDefault(Return(std::optional<ripple::LedgerHeader>{}));
EXPECT_CALL(*backend_, fetchLedgerByHash).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_hash": "{}"
}})",
kNFT_ID,
kLEDGER_HASH
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "lgrNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerNotFound");
});
}
// error case ledger non exist via index
TEST_F(RPCNFTInfoHandlerTest, NonExistLedgerViaLedgerStringIndex)
{
// mock fetchLedgerBySequence return empty
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(std::optional<ripple::LedgerHeader>{}));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_index": "4"
}})",
kNFT_ID
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "lgrNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerNotFound");
});
}
TEST_F(RPCNFTInfoHandlerTest, NonExistLedgerViaLedgerIntIndex)
{
// mock fetchLedgerBySequence return empty
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(std::optional<ripple::LedgerHeader>{}));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_index": 4
}})",
kNFT_ID
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "lgrNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerNotFound");
});
}
// error case ledger > max seq via hash
// idk why this case will happen in reality
TEST_F(RPCNFTInfoHandlerTest, NonExistLedgerViaLedgerHash2)
{
// mock fetchLedgerByHash return ledger but seq is 31 > 30
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 31);
ON_CALL(*backend_, fetchLedgerByHash(ripple::uint256{kLEDGER_HASH}, _)).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerByHash).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_hash": "{}"
}})",
kNFT_ID,
kLEDGER_HASH
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "lgrNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerNotFound");
});
}
// error case ledger > max seq via index
TEST_F(RPCNFTInfoHandlerTest, NonExistLedgerViaLedgerIndex2)
{
// no need to check from db,call fetchLedgerBySequence 0 time
// differ from previous logic
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(0);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_index": "31"
}})",
kNFT_ID
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "lgrNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "ledgerNotFound");
});
}
// error case nft does not exist
TEST_F(RPCNFTInfoHandlerTest, NonExistNFT)
{
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 30);
ON_CALL(*backend_, fetchLedgerByHash(ripple::uint256{kLEDGER_HASH}, _)).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerByHash).Times(1);
// fetch nft return emtpy
ON_CALL(*backend_, fetchNFT).WillByDefault(Return(std::optional<NFT>{}));
EXPECT_CALL(*backend_, fetchNFT(ripple::uint256{kNFT_ID}, 30, _)).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}",
"ledger_hash": "{}"
}})",
kNFT_ID,
kLEDGER_HASH
));
runSpawn([&, this](boost::asio::yield_context yield) {
auto const handler = AnyHandler{NFTInfoHandler{backend_}};
auto const output = handler.process(input, Context{.yield = yield});
ASSERT_FALSE(output);
auto const err = rpc::makeError(output.result.error());
EXPECT_EQ(err.at("error").as_string(), "objectNotFound");
EXPECT_EQ(err.at("error_message").as_string(), "NFT not found");
});
}
// normal case when only provide nft_id
TEST_F(RPCNFTInfoHandlerTest, DefaultParameters)
{
static constexpr auto kCURRENT_OUTPUT = R"({
"nft_id": "00010000A7CAD27B688D14BA1A9FA5366554D6ADCF9CE0875B974D9F00000004",
"ledger_index": 30,
"owner": "rf1BiGeXwwQoi8Z2ueFYTEXSwuJYfV2Jpn",
"is_burned": false,
"flags": 1,
"transfer_fee": 0,
"issuer": "rGJUF4PvVkMNxG6Bg6AKg3avhrtQyAffcm",
"nft_taxon": 0,
"nft_serial": 4,
"uri": "757269",
"validated": true
})";
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 30);
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
// fetch nft return something
auto const nft = std::make_optional<NFT>(createNft(kNFT_ID, kACCOUNT, ledgerHeader.seq));
ON_CALL(*backend_, fetchNFT).WillByDefault(Return(nft));
EXPECT_CALL(*backend_, fetchNFT(ripple::uint256{kNFT_ID}, 30, _)).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}"
}})",
kNFT_ID
));
runSpawn([&, this](auto yield) {
auto handler = AnyHandler{NFTInfoHandler{this->backend_}};
auto const output = handler.process(input, Context{yield});
ASSERT_TRUE(output);
EXPECT_EQ(json::parse(kCURRENT_OUTPUT), *output.result);
});
}
// nft is burned -> should not omit uri
TEST_F(RPCNFTInfoHandlerTest, BurnedNFT)
{
static constexpr auto kCURRENT_OUTPUT = R"({
"nft_id": "00010000A7CAD27B688D14BA1A9FA5366554D6ADCF9CE0875B974D9F00000004",
"ledger_index": 30,
"owner": "rf1BiGeXwwQoi8Z2ueFYTEXSwuJYfV2Jpn",
"is_burned": true,
"flags": 1,
"transfer_fee": 0,
"issuer": "rGJUF4PvVkMNxG6Bg6AKg3avhrtQyAffcm",
"nft_taxon": 0,
"nft_serial": 4,
"uri": "757269",
"validated": true
})";
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 30);
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
// fetch nft return something
auto const nft =
std::make_optional<NFT>(createNft(kNFT_ID, kACCOUNT, ledgerHeader.seq, ripple::Blob{'u', 'r', 'i'}, true));
ON_CALL(*backend_, fetchNFT).WillByDefault(Return(nft));
EXPECT_CALL(*backend_, fetchNFT(ripple::uint256{kNFT_ID}, 30, _)).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}"
}})",
kNFT_ID
));
runSpawn([&, this](auto yield) {
auto handler = AnyHandler{NFTInfoHandler{this->backend_}};
auto const output = handler.process(input, Context{yield});
ASSERT_TRUE(output);
EXPECT_EQ(json::parse(kCURRENT_OUTPUT), *output.result);
});
}
// uri is not available -> should specify an empty string
TEST_F(RPCNFTInfoHandlerTest, NotBurnedNFTWithoutURI)
{
static constexpr auto kCURRENT_OUTPUT = R"({
"nft_id": "00010000A7CAD27B688D14BA1A9FA5366554D6ADCF9CE0875B974D9F00000004",
"ledger_index": 30,
"owner": "rf1BiGeXwwQoi8Z2ueFYTEXSwuJYfV2Jpn",
"is_burned": false,
"flags": 1,
"transfer_fee": 0,
"issuer": "rGJUF4PvVkMNxG6Bg6AKg3avhrtQyAffcm",
"nft_taxon": 0,
"nft_serial": 4,
"uri": "",
"validated": true
})";
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 30);
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
// fetch nft return something
auto const nft = std::make_optional<NFT>(createNft(kNFT_ID, kACCOUNT, ledgerHeader.seq, ripple::Blob{}));
ON_CALL(*backend_, fetchNFT).WillByDefault(Return(nft));
EXPECT_CALL(*backend_, fetchNFT(ripple::uint256{kNFT_ID}, 30, _)).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}"
}})",
kNFT_ID
));
runSpawn([&, this](auto yield) {
auto handler = AnyHandler{NFTInfoHandler{this->backend_}};
auto const output = handler.process(input, Context{yield});
ASSERT_TRUE(output);
EXPECT_EQ(json::parse(kCURRENT_OUTPUT), *output.result);
});
}
// check taxon field, transfer fee and serial
TEST_F(RPCNFTInfoHandlerTest, NFTWithExtraFieldsSet)
{
static constexpr auto kCURRENT_OUTPUT = R"({
"nft_id": "00081388319F12E15BCA13E1B933BF4C99C8E1BBC36BD4910A85D52F00000022",
"ledger_index": 30,
"owner": "rf1BiGeXwwQoi8Z2ueFYTEXSwuJYfV2Jpn",
"is_burned": false,
"flags": 8,
"transfer_fee": 5000,
"issuer": "rnX4gsB86NNrGV8xHcJ5hbR2aKtSetbuwg",
"nft_taxon": 7826,
"nft_serial": 34,
"uri": "757269",
"validated": true
})";
auto ledgerHeader = createLedgerHeader(kLEDGER_HASH, 30);
ON_CALL(*backend_, fetchLedgerBySequence).WillByDefault(Return(ledgerHeader));
EXPECT_CALL(*backend_, fetchLedgerBySequence).Times(1);
// fetch nft return something
auto const nft = std::make_optional<NFT>(createNft(kNFT_ID2, kACCOUNT, ledgerHeader.seq));
ON_CALL(*backend_, fetchNFT).WillByDefault(Return(nft));
EXPECT_CALL(*backend_, fetchNFT(ripple::uint256{kNFT_ID2}, 30, _)).Times(1);
auto const input = json::parse(fmt::format(
R"({{
"nft_id": "{}"
}})",
kNFT_ID2
));
runSpawn([&, this](auto yield) {
auto handler = AnyHandler{NFTInfoHandler{this->backend_}};
auto const output = handler.process(input, Context{yield});
ASSERT_TRUE(output);
EXPECT_EQ(json::parse(kCURRENT_OUTPUT), *output.result);
});
}