Files
clio/tests/integration/data/cassandra/BackendTests.cpp
2025-06-12 16:16:11 +01:00

1447 lines
68 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of clio: https://github.com/XRPLF/clio
Copyright (c) 2023, the clio developers.
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include "data/BackendInterface.hpp"
#include "data/CassandraBackend.hpp"
#include "data/DBHelpers.hpp"
#include "data/LedgerCache.hpp"
#include "data/LedgerHeaderCache.hpp"
#include "data/Types.hpp"
#include "data/cassandra/Handle.hpp"
#include "data/cassandra/SettingsProvider.hpp"
#include "data/cassandra/Types.hpp"
#include "etl/NFTHelpers.hpp"
#include "rpc/RPCHelpers.hpp"
#include "util/AsioContextTestFixture.hpp"
#include "util/LedgerUtils.hpp"
#include "util/MockLedgerHeaderCache.hpp"
#include "util/MockPrometheus.hpp"
#include "util/Random.hpp"
#include "util/StringUtils.hpp"
#include "util/config/ConfigValue.hpp"
#include "util/config/ObjectView.hpp"
#include "util/config/Types.hpp"
#include <TestGlobals.hpp>
#include <boost/asio/impl/spawn.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/spawn.hpp>
#include <boost/uuid/random_generator.hpp>
#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_hash.hpp>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <xrpl/basics/Slice.h>
#include <xrpl/basics/base_uint.h>
#include <xrpl/basics/strHex.h>
#include <xrpl/protocol/AccountID.h>
#include <xrpl/protocol/LedgerHeader.h>
#include <xrpl/protocol/STTx.h>
#include <xrpl/protocol/Serializer.h>
#include <xrpl/protocol/TxMeta.h>
#include <algorithm>
#include <atomic>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <map>
#include <memory>
#include <optional>
#include <random>
#include <string>
#include <string_view>
#include <thread>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace util;
using namespace util::config;
using namespace std;
using namespace rpc;
using namespace prometheus;
using namespace data::cassandra;
class BackendCassandraTestBase : public SyncAsioContextTest, public WithPrometheus {
protected:
ClioConfigDefinition cfg_{
{"database.type", ConfigValue{ConfigType::String}.defaultValue("cassandra")},
{"database.cassandra.contact_points",
ConfigValue{ConfigType::String}.defaultValue(TestGlobals::instance().backendHost)},
{"database.cassandra.secure_connect_bundle", ConfigValue{ConfigType::String}.optional()},
{"database.cassandra.port", ConfigValue{ConfigType::Integer}.optional()},
{"database.cassandra.keyspace",
ConfigValue{ConfigType::String}.defaultValue(TestGlobals::instance().backendKeyspace)},
{"database.cassandra.replication_factor", ConfigValue{ConfigType::Integer}.defaultValue(1)},
{"database.cassandra.table_prefix", ConfigValue{ConfigType::String}.optional()},
{"database.cassandra.max_write_requests_outstanding", ConfigValue{ConfigType::Integer}.defaultValue(10'000)},
{"database.cassandra.max_read_requests_outstanding", ConfigValue{ConfigType::Integer}.defaultValue(100'000)},
{"database.cassandra.threads",
ConfigValue{ConfigType::Integer}.defaultValue(static_cast<uint32_t>(std::thread::hardware_concurrency()))},
{"database.cassandra.core_connections_per_host", ConfigValue{ConfigType::Integer}.defaultValue(1)},
{"database.cassandra.queue_size_io", ConfigValue{ConfigType::Integer}.optional()},
{"database.cassandra.write_batch_size", ConfigValue{ConfigType::Integer}.defaultValue(20)},
{"database.cassandra.connect_timeout", ConfigValue{ConfigType::Integer}.defaultValue(10).optional()},
{"database.cassandra.request_timeout", ConfigValue{ConfigType::Integer}.defaultValue(10).optional()},
{"database.cassandra.username", ConfigValue{ConfigType::String}.optional()},
{"database.cassandra.password", ConfigValue{ConfigType::String}.optional()},
{"database.cassandra.certfile", ConfigValue{ConfigType::String}.optional()},
{"read_only", ConfigValue{ConfigType::Boolean}.defaultValue(false)}
};
static constexpr auto kRAWHEADER =
"03C3141A01633CD656F91B4EBB5EB89B791BD34DBC8A04BB6F407C5335BC54351E"
"DD733898497E809E04074D14D271E4832D7888754F9230800761563A292FA2315A"
"6DB6FE30CC5909B285080FCD6773CC883F9FE0EE4D439340AC592AADB973ED3CF5"
"3E2232B33EF57CECAC2816E3122816E31A0A00F8377CD95DFA484CFAE282656A58"
"CE5AA29652EFFD80AC59CD91416E4E13DBBE";
ObjectView obj_ = cfg_.getObject("database.cassandra");
SettingsProvider settingsProvider_{obj_};
// recreated for each test
data::LedgerCache cache_;
std::default_random_engine randomEngine_{0};
public:
~BackendCassandraTestBase() override
{
// drop the keyspace for next test
Handle const handle{TestGlobals::instance().backendHost};
EXPECT_TRUE(handle.connect());
handle.execute("DROP KEYSPACE " + TestGlobals::instance().backendKeyspace);
}
};
class BackendCassandraTest : public BackendCassandraTestBase {
protected:
std::unique_ptr<BackendInterface> backend_{std::make_unique<CassandraBackend>(settingsProvider_, cache_, false)};
};
TEST_F(BackendCassandraTest, Basic)
{
std::atomic_bool done = false;
std::optional<boost::asio::io_context::work> work;
work.emplace(ctx_);
boost::asio::spawn(ctx_, [this, &done, &work](boost::asio::yield_context yield) {
std::string const rawHeader =
"03C3141A01633CD656F91B4EBB5EB89B791BD34DBC8A04BB6F407C5335BC54351E"
"DD733898497E809E04074D14D271E4832D7888754F9230800761563A292FA2315A"
"6DB6FE30CC5909B285080FCD6773CC883F9FE0EE4D439340AC592AADB973ED3CF5"
"3E2232B33EF57CECAC2816E3122816E31A0A00F8377CD95DFA484CFAE282656A58"
"CE5AA29652EFFD80AC59CD91416E4E13DBBE";
std::string rawHeaderBlob = hexStringToBinaryString(rawHeader);
ripple::LedgerHeader const lgrInfo = util::deserializeHeader(ripple::makeSlice(rawHeaderBlob));
backend_->writeLedger(lgrInfo, std::move(rawHeaderBlob));
backend_->writeSuccessor(uint256ToString(data::kFIRST_KEY), lgrInfo.seq, uint256ToString(data::kLAST_KEY));
ASSERT_TRUE(backend_->finishWrites(lgrInfo.seq));
{
auto rng = backend_->fetchLedgerRange();
ASSERT_TRUE(rng.has_value());
EXPECT_EQ(rng->minSequence, rng->maxSequence);
EXPECT_EQ(rng->maxSequence, lgrInfo.seq);
}
{
auto seq = backend_->fetchLatestLedgerSequence(yield);
ASSERT_TRUE(seq.has_value());
EXPECT_EQ(*seq, lgrInfo.seq);
}
{
auto retLgr = backend_->fetchLedgerBySequence(lgrInfo.seq, yield);
ASSERT_TRUE(retLgr.has_value());
EXPECT_EQ(retLgr->seq, lgrInfo.seq);
EXPECT_EQ(ledgerHeaderToBlob(lgrInfo), ledgerHeaderToBlob(*retLgr));
}
EXPECT_FALSE(backend_->fetchLedgerBySequence(lgrInfo.seq + 1, yield).has_value());
auto lgrInfoOld = lgrInfo;
auto lgrInfoNext = lgrInfo;
lgrInfoNext.seq = lgrInfo.seq + 1;
lgrInfoNext.parentHash = lgrInfo.hash;
lgrInfoNext.hash++;
lgrInfoNext.accountHash = ~lgrInfo.accountHash;
{
std::string infoBlob = ledgerHeaderToBinaryString(lgrInfoNext);
backend_->writeLedger(lgrInfoNext, std::move(infoBlob));
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng.has_value());
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
}
{
auto seq = backend_->fetchLatestLedgerSequence(yield);
EXPECT_EQ(seq, lgrInfoNext.seq);
}
{
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr.has_value());
EXPECT_EQ(retLgr->seq, lgrInfoNext.seq);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
EXPECT_NE(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoOld));
retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq - 1, yield);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoOld));
EXPECT_NE(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq - 2, yield);
EXPECT_FALSE(backend_->fetchLedgerBySequence(lgrInfoNext.seq - 2, yield).has_value());
auto txns = backend_->fetchAllTransactionsInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(txns.size(), 0);
auto hashes = backend_->fetchAllTransactionHashesInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(hashes.size(), 0);
}
// the below dummy data is not expected to be consistent. The
// metadata string does represent valid metadata. Don't assume
// though that the transaction or its hash correspond to the
// metadata, or anything like that. These tests are purely
// binary tests to make sure the same data that goes in, comes
// back out
std::string const metaHex =
"201C0000001AF8E411006F560A3E08122A05AC91DEFA87052B0554E4A29B46"
"3A27642EBB060B6052196592EEE72200000000240480FDB52503CE1A863300"
"000000000000003400000000000000005529983CBAED30F547471452921C3C"
"6B9F9685F292F6291000EED0A44413AF18C250101AC09600F4B502C8F7F830"
"F80B616DCB6F3970CB79AB70975A05ED5B66860B9564400000001FE217CB65"
"D54B640B31521B05000000000000000000000000434E5900000000000360E3"
"E0751BD9A566CD03FA6CAFC78118B82BA081142252F328CF91263417762570"
"D67220CCB33B1370E1E1E3110064561AC09600F4B502C8F7F830F80B616DCB"
"6F3970CB79AB70975A05ED33DF783681E8365A05ED33DF783681581AC09600"
"F4B502C8F7F830F80B616DCB6F3970CB79AB70975A05ED33DF783681031100"
"0000000000000000000000434E59000000000004110360E3E0751BD9A566CD"
"03FA6CAFC78118B82BA0E1E1E4110064561AC09600F4B502C8F7F830F80B61"
"6DCB6F3970CB79AB70975A05ED5B66860B95E72200000000365A05ED5B6686"
"0B95581AC09600F4B502C8F7F830F80B616DCB6F3970CB79AB70975A05ED5B"
"66860B95011100000000000000000000000000000000000000000211000000"
"00000000000000000000000000000000000311000000000000000000000000"
"434E59000000000004110360E3E0751BD9A566CD03FA6CAFC78118B82BA0E1"
"E1E311006F5647B05E66DE9F3DF2689E8F4CE6126D3136B6C5E79587F9D24B"
"D71A952B0852BAE8240480FDB950101AC09600F4B502C8F7F830F80B616DCB"
"6F3970CB79AB70975A05ED33DF78368164400000033C83A95F65D59D9A6291"
"9C2D18000000000000000000000000434E5900000000000360E3E0751BD9A5"
"66CD03FA6CAFC78118B82BA081142252F328CF91263417762570D67220CCB3"
"3B1370E1E1E511006456AEA3074F10FE15DAC592F8A0405C61FB7D4C98F588"
"C2D55C84718FAFBBD2604AE722000000003100000000000000003200000000"
"0000000058AEA3074F10FE15DAC592F8A0405C61FB7D4C98F588C2D55C8471"
"8FAFBBD2604A82142252F328CF91263417762570D67220CCB33B1370E1E1E5"
"1100612503CE1A8755CE935137F8C6C8DEF26B5CD93BE18105CA83F65E1E90"
"CEC546F562D25957DC0856E0311EB450B6177F969B94DBDDA83E99B7A0576A"
"CD9079573876F16C0C004F06E6240480FDB9624000000005FF0E2BE1E72200"
"000000240480FDBA2D00000005624000000005FF0E1F81142252F328CF9126"
"3417762570D67220CCB33B1370E1E1F1031000";
std::string const txnHex =
"1200072200000000240480FDB920190480FDB5201B03CE1A8964400000033C"
"83A95F65D59D9A62919C2D18000000000000000000000000434E5900000000"
"000360E3E0751BD9A566CD03FA6CAFC78118B82BA068400000000000000C73"
"21022D40673B44C82DEE1DDB8B9BB53DCCE4F97B27404DB850F068DD91D685"
"E337EA7446304402202EA6B702B48B39F2197112382838F92D4C02948E9911"
"FE6B2DEBCF9183A426BC022005DAC06CD4517E86C2548A80996019F3AC60A0"
"9EED153BF60C992930D68F09F981142252F328CF91263417762570D67220CC"
"B33B1370";
std::string const hashHex = "0A81FB3D6324C2DCF73131505C6E4DC67981D7FC39F5E9574CEC4B1F22D28BF7";
// this account is not related to the above transaction and
// metadata
std::string const accountHex =
"1100612200000000240480FDBC2503CE1A872D0000000555516931B2AD018EFFBE"
"17C5C9DCCF872F36837C2C6136ACF80F2A24079CF81FD0624000000005FF0E0781"
"142252F328CF91263417762570D67220CCB33B1370";
std::string const accountIndexHex = "E0311EB450B6177F969B94DBDDA83E99B7A0576ACD9079573876F16C0C004F06";
// An NFTokenMint tx
std::string const nftTxnHex =
"1200192200000008240011CC9B201B001F71D6202A0000000168400000"
"000000000C7321ED475D1452031E8F9641AF1631519A58F7B8681E172E"
"4838AA0E59408ADA1727DD74406960041F34F10E0CBB39444B4D4E577F"
"C0B7E8D843D091C2917E96E7EE0E08B30C91413EC551A2B8A1D405E8BA"
"34FE185D8B10C53B40928611F2DE3B746F0303751868747470733A2F2F"
"677265677765697362726F642E636F6D81146203F49C21D5D6E022CB16"
"DE3538F248662FC73C";
std::string const nftTxnMeta =
"201C00000001F8E511005025001F71B3556ED9C9459001E4F4A9121F4E"
"07AB6D14898A5BBEF13D85C25D743540DB59F3CF566203F49C21D5D6E0"
"22CB16DE3538F248662FC73CFFFFFFFFFFFFFFFFFFFFFFFFE6FAEC5A00"
"0800006203F49C21D5D6E022CB16DE3538F248662FC73C8962EFA00000"
"0006751868747470733A2F2F677265677765697362726F642E636F6DE1"
"EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73C93E8B1"
"C200000028751868747470733A2F2F677265677765697362726F642E63"
"6F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73C"
"9808B6B90000001D751868747470733A2F2F677265677765697362726F"
"642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F24866"
"2FC73C9C28BBAC00000012751868747470733A2F2F6772656777656973"
"62726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538"
"F248662FC73CA048C0A300000007751868747470733A2F2F6772656777"
"65697362726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16"
"DE3538F248662FC73CAACE82C500000029751868747470733A2F2F6772"
"65677765697362726F642E636F6DE1EC5A000800006203F49C21D5D6E0"
"22CB16DE3538F248662FC73CAEEE87B80000001E751868747470733A2F"
"2F677265677765697362726F642E636F6DE1EC5A000800006203F49C21"
"D5D6E022CB16DE3538F248662FC73CB30E8CAF00000013751868747470"
"733A2F2F677265677765697362726F642E636F6DE1EC5A000800006203"
"F49C21D5D6E022CB16DE3538F248662FC73CB72E91A200000008751868"
"747470733A2F2F677265677765697362726F642E636F6DE1EC5A000800"
"006203F49C21D5D6E022CB16DE3538F248662FC73CC1B453C40000002A"
"751868747470733A2F2F677265677765697362726F642E636F6DE1EC5A"
"000800006203F49C21D5D6E022CB16DE3538F248662FC73CC5D458BB00"
"00001F751868747470733A2F2F677265677765697362726F642E636F6D"
"E1EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73CC9F4"
"5DAE00000014751868747470733A2F2F677265677765697362726F642E"
"636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC7"
"3CCE1462A500000009751868747470733A2F2F67726567776569736272"
"6F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248"
"662FC73CD89A24C70000002B751868747470733A2F2F67726567776569"
"7362726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE35"
"38F248662FC73CDCBA29BA00000020751868747470733A2F2F67726567"
"7765697362726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB"
"16DE3538F248662FC73CE0DA2EB100000015751868747470733A2F2F67"
"7265677765697362726F642E636F6DE1EC5A000800006203F49C21D5D6"
"E022CB16DE3538F248662FC73CE4FA33A40000000A751868747470733A"
"2F2F677265677765697362726F642E636F6DE1EC5A000800006203F49C"
"21D5D6E022CB16DE3538F248662FC73CF39FFABD000000217518687474"
"70733A2F2F677265677765697362726F642E636F6DE1EC5A0008000062"
"03F49C21D5D6E022CB16DE3538F248662FC73CF7BFFFB0000000167518"
"68747470733A2F2F677265677765697362726F642E636F6DE1EC5A0008"
"00006203F49C21D5D6E022CB16DE3538F248662FC73CFBE004A7000000"
"0B751868747470733A2F2F677265677765697362726F642E636F6DE1F1"
"E1E72200000000501A6203F49C21D5D6E022CB16DE3538F248662FC73C"
"662FC73C8962EFA000000006FAEC5A000800006203F49C21D5D6E022CB"
"16DE3538F248662FC73C8962EFA000000006751868747470733A2F2F67"
"7265677765697362726F642E636F6DE1EC5A000800006203F49C21D5D6"
"E022CB16DE3538F248662FC73C93E8B1C200000028751868747470733A"
"2F2F677265677765697362726F642E636F6DE1EC5A000800006203F49C"
"21D5D6E022CB16DE3538F248662FC73C9808B6B90000001D7518687474"
"70733A2F2F677265677765697362726F642E636F6DE1EC5A0008000062"
"03F49C21D5D6E022CB16DE3538F248662FC73C9C28BBAC000000127518"
"68747470733A2F2F677265677765697362726F642E636F6DE1EC5A0008"
"00006203F49C21D5D6E022CB16DE3538F248662FC73CA048C0A3000000"
"07751868747470733A2F2F677265677765697362726F642E636F6DE1EC"
"5A000800006203F49C21D5D6E022CB16DE3538F248662FC73CAACE82C5"
"00000029751868747470733A2F2F677265677765697362726F642E636F"
"6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73CAE"
"EE87B80000001E751868747470733A2F2F677265677765697362726F64"
"2E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248662F"
"C73CB30E8CAF00000013751868747470733A2F2F677265677765697362"
"726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F2"
"48662FC73CB72E91A200000008751868747470733A2F2F677265677765"
"697362726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE"
"3538F248662FC73CC1B453C40000002A751868747470733A2F2F677265"
"677765697362726F642E636F6DE1EC5A000800006203F49C21D5D6E022"
"CB16DE3538F248662FC73CC5D458BB0000001F751868747470733A2F2F"
"677265677765697362726F642E636F6DE1EC5A000800006203F49C21D5"
"D6E022CB16DE3538F248662FC73CC9F45DAE0000001475186874747073"
"3A2F2F677265677765697362726F642E636F6DE1EC5A000800006203F4"
"9C21D5D6E022CB16DE3538F248662FC73CCE1462A50000000975186874"
"7470733A2F2F677265677765697362726F642E636F6DE1EC5A00080000"
"6203F49C21D5D6E022CB16DE3538F248662FC73CD89A24C70000002B75"
"1868747470733A2F2F677265677765697362726F642E636F6DE1EC5A00"
"0800006203F49C21D5D6E022CB16DE3538F248662FC73CDCBA29BA0000"
"0020751868747470733A2F2F677265677765697362726F642E636F6DE1"
"EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73CE0DA2E"
"B100000015751868747470733A2F2F677265677765697362726F642E63"
"6F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F248662FC73C"
"E4FA33A40000000A751868747470733A2F2F677265677765697362726F"
"642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538F24866"
"2FC73CEF7FF5C60000002C751868747470733A2F2F6772656777656973"
"62726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16DE3538"
"F248662FC73CF39FFABD00000021751868747470733A2F2F6772656777"
"65697362726F642E636F6DE1EC5A000800006203F49C21D5D6E022CB16"
"DE3538F248662FC73CF7BFFFB000000016751868747470733A2F2F6772"
"65677765697362726F642E636F6DE1EC5A000800006203F49C21D5D6E0"
"22CB16DE3538F248662FC73CFBE004A70000000B751868747470733A2F"
"2F677265677765697362726F642E636F6DE1F1E1E1E511006125001F71"
"B3556ED9C9459001E4F4A9121F4E07AB6D14898A5BBEF13D85C25D7435"
"40DB59F3CF56BE121B82D5812149D633F605EB07265A80B762A365CE94"
"883089FEEE4B955701E6240011CC9B202B0000002C6240000002540BE3"
"ECE1E72200000000240011CC9C2D0000000A202B0000002D202C000000"
"066240000002540BE3E081146203F49C21D5D6E022CB16DE3538F24866"
"2FC73CE1E1F1031000";
std::string const nftTxnHashHex =
"6C7F69A6D25A13AC4A2E9145999F45D4674F939900017A96885FDC2757"
"E9284E";
ripple::uint256 nftID;
EXPECT_TRUE(
nftID.parseHex("000800006203F49C21D5D6E022CB16DE3538F248662"
"FC73CEF7FF5C60000002C")
);
std::string metaBlob = hexStringToBinaryString(metaHex);
std::string txnBlob = hexStringToBinaryString(txnHex);
std::string const hashBlob = hexStringToBinaryString(hashHex);
std::string accountBlob = hexStringToBinaryString(accountHex);
std::string const accountIndexBlob = hexStringToBinaryString(accountIndexHex);
std::vector<ripple::AccountID> affectedAccounts;
std::string nftTxnBlob = hexStringToBinaryString(nftTxnHex);
std::string const nftTxnMetaBlob = hexStringToBinaryString(nftTxnMeta);
{
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.txHash = ~lgrInfo.txHash;
lgrInfoNext.accountHash = lgrInfoNext.accountHash ^ lgrInfoNext.txHash;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
ripple::uint256 hash256;
EXPECT_TRUE(hash256.parseHex(hashHex));
ripple::TxMeta const txMeta{hash256, lgrInfoNext.seq, metaBlob};
auto accountsSet = txMeta.getAffectedAccounts();
for (auto& a : accountsSet) {
affectedAccounts.push_back(a);
}
std::vector<AccountTransactionsData> accountTxData;
accountTxData.emplace_back(txMeta, hash256);
ripple::uint256 nftHash256;
EXPECT_TRUE(nftHash256.parseHex(nftTxnHashHex));
ripple::TxMeta const nftTxMeta{nftHash256, lgrInfoNext.seq, nftTxnMetaBlob};
ripple::SerialIter it{nftTxnBlob.data(), nftTxnBlob.size()};
ripple::STTx const sttx{it};
auto const [parsedNFTTxsRef, parsedNFT] = etl::getNFTDataFromTx(nftTxMeta, sttx);
// need to copy the nft txns so we can std::move later
std::vector<NFTTransactionsData> parsedNFTTxs;
parsedNFTTxs.insert(parsedNFTTxs.end(), parsedNFTTxsRef.begin(), parsedNFTTxsRef.end());
EXPECT_EQ(parsedNFTTxs.size(), 1);
EXPECT_TRUE(parsedNFT.has_value());
EXPECT_EQ(parsedNFT->tokenID, nftID);
std::vector<NFTsData> nftData;
nftData.push_back(*parsedNFT);
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
backend_->writeTransaction(
std::string{hashBlob},
lgrInfoNext.seq,
lgrInfoNext.closeTime.time_since_epoch().count(),
std::string{txnBlob},
std::string{metaBlob}
);
backend_->writeAccountTransactions(std::move(accountTxData));
backend_->writeNFTs(nftData);
backend_->writeNFTTransactions(parsedNFTTxs);
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{accountBlob});
backend_->writeSuccessor(uint256ToString(data::kFIRST_KEY), lgrInfoNext.seq, std::string{accountIndexBlob});
backend_->writeSuccessor(std::string{accountIndexBlob}, lgrInfoNext.seq, uint256ToString(data::kLAST_KEY));
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
auto allTransactions = backend_->fetchAllTransactionsInLedger(lgrInfoNext.seq, yield);
ASSERT_EQ(allTransactions.size(), 1);
EXPECT_STREQ(
reinterpret_cast<char const*>(allTransactions[0].transaction.data()),
static_cast<char const*>(txnBlob.data())
);
EXPECT_STREQ(
reinterpret_cast<char const*>(allTransactions[0].metadata.data()),
static_cast<char const*>(metaBlob.data())
);
auto hashes = backend_->fetchAllTransactionHashesInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(hashes.size(), 1);
EXPECT_EQ(ripple::strHex(hashes[0]), hashHex);
for (auto& a : affectedAccounts) {
auto [accountTransactions, cursor] = backend_->fetchAccountTransactions(a, 100, true, {}, yield);
EXPECT_EQ(accountTransactions.size(), 1);
EXPECT_EQ(accountTransactions[0], accountTransactions[0]);
EXPECT_FALSE(cursor);
}
auto nft = backend_->fetchNFT(nftID, lgrInfoNext.seq, yield);
EXPECT_TRUE(nft.has_value());
auto [nftTxns, cursor] = backend_->fetchNFTTransactions(nftID, 100, true, {}, yield);
EXPECT_EQ(nftTxns.size(), 1);
EXPECT_EQ(nftTxns[0], nftTxns[0]);
EXPECT_FALSE(cursor);
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
std::string accountBlobOld = accountBlob;
{
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
lgrInfoNext.txHash = lgrInfoNext.txHash ^ lgrInfoNext.accountHash;
lgrInfoNext.accountHash = ~(lgrInfoNext.accountHash ^ lgrInfoNext.txHash);
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
std::shuffle(accountBlob.begin(), accountBlob.end(), randomEngine_);
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{accountBlob});
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
auto txns = backend_->fetchAllTransactionsInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(txns.size(), 0);
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq - 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlobOld.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
{
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
lgrInfoNext.txHash = lgrInfoNext.txHash ^ lgrInfoNext.accountHash;
lgrInfoNext.accountHash = ~(lgrInfoNext.accountHash ^ lgrInfoNext.txHash);
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{});
backend_->writeSuccessor(
uint256ToString(data::kFIRST_KEY), lgrInfoNext.seq, uint256ToString(data::kLAST_KEY)
);
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
auto txns = backend_->fetchAllTransactionsInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(txns.size(), 0);
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_FALSE(obj);
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_FALSE(obj);
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq - 2, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlobOld.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
auto generateObjects = [](size_t numObjects, uint32_t ledgerSequence) {
std::vector<std::pair<std::string, std::string>> res{numObjects};
ripple::uint256 key;
key = ledgerSequence * 100000ul;
for (auto& blob : res) {
++key;
std::string const keyStr{reinterpret_cast<char const*>(key.data()), ripple::uint256::size()};
blob.first = keyStr;
blob.second = std::to_string(ledgerSequence) + keyStr;
}
return res;
};
auto updateObjects = [](uint32_t ledgerSequence, auto objs) {
for (auto& [key, obj] : objs) {
obj = std::to_string(ledgerSequence) + obj;
}
return objs;
};
auto generateTxns = [](size_t numTxns, uint32_t ledgerSequence) {
std::vector<std::tuple<std::string, std::string, std::string>> res{numTxns};
ripple::uint256 base;
base = ledgerSequence * 100000ul;
for (auto& blob : res) {
++base;
std::string const hashStr{reinterpret_cast<char const*>(base.data()), ripple::uint256::size()};
std::string const txnStr = "tx" + std::to_string(ledgerSequence) + hashStr;
std::string const metaStr = "meta" + std::to_string(ledgerSequence) + hashStr;
blob = std::make_tuple(hashStr, txnStr, metaStr);
}
return res;
};
auto generateAccounts = [](uint32_t ledgerSequence, uint32_t numAccounts) {
std::vector<ripple::AccountID> accounts;
ripple::AccountID base;
base = ledgerSequence * 998765ul;
for (size_t i = 0; i < numAccounts; ++i) {
++base;
accounts.push_back(base);
}
return accounts;
};
auto generateAccountTx = [&](uint32_t ledgerSequence, auto txns) {
std::vector<AccountTransactionsData> ret;
util::MTRandomGenerator randomGenerator;
auto accounts = generateAccounts(ledgerSequence, 10);
uint32_t idx = 0;
for (auto& [hash, txn, meta] : txns) {
AccountTransactionsData data;
data.ledgerSequence = ledgerSequence;
data.transactionIndex = idx;
data.txHash = hash;
for (size_t i = 0; i < 3; ++i) {
data.accounts.insert(accounts[randomGenerator.uniform(0ul, accounts.size() - 1)]);
}
++idx;
ret.push_back(data);
}
return ret;
};
auto generateNextLedger = [this](auto lgrInfo) {
++lgrInfo.seq;
lgrInfo.parentHash = lgrInfo.hash;
std::shuffle(lgrInfo.txHash.begin(), lgrInfo.txHash.end(), randomEngine_);
std::shuffle(lgrInfo.accountHash.begin(), lgrInfo.accountHash.end(), randomEngine_);
std::shuffle(lgrInfo.hash.begin(), lgrInfo.hash.end(), randomEngine_);
return lgrInfo;
};
auto writeLedger = [&](auto lgrInfo, auto txns, auto objs, auto accountTx, auto state) {
backend_->startWrites();
backend_->writeLedger(lgrInfo, ledgerHeaderToBinaryString(lgrInfo));
for (auto [hash, txn, meta] : txns) {
backend_->writeTransaction(
std::move(hash),
lgrInfo.seq,
lgrInfo.closeTime.time_since_epoch().count(),
std::move(txn),
std::move(meta)
);
}
for (auto const& [key, obj] : objs) {
backend_->writeLedgerObject(std::string{key}, lgrInfo.seq, std::string{obj});
}
if (state.count(lgrInfo.seq - 1) == 0 ||
std::find_if(state[lgrInfo.seq - 1].begin(), state[lgrInfo.seq - 1].end(), [&](auto obj) {
return obj.first == objs[0].first;
}) == state[lgrInfo.seq - 1].end()) {
for (size_t i = 0; i < objs.size(); ++i) {
if (i + 1 < objs.size()) {
backend_->writeSuccessor(
std::string{objs[i].first}, lgrInfo.seq, std::string{objs[i + 1].first}
);
} else {
backend_->writeSuccessor(
std::string{objs[i].first}, lgrInfo.seq, uint256ToString(data::kLAST_KEY)
);
}
}
if (state.contains(lgrInfo.seq - 1)) {
backend_->writeSuccessor(
std::string{state[lgrInfo.seq - 1].back().first}, lgrInfo.seq, std::string{objs[0].first}
);
} else {
backend_->writeSuccessor(
uint256ToString(data::kFIRST_KEY), lgrInfo.seq, std::string{objs[0].first}
);
}
}
backend_->writeAccountTransactions(std::move(accountTx));
ASSERT_TRUE(backend_->finishWrites(lgrInfo.seq));
};
auto checkLedger = [&](auto lgrInfo, auto txns, auto objs, auto accountTx) {
auto rng = backend_->fetchLedgerRange();
auto seq = lgrInfo.seq;
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_GE(rng->maxSequence, seq);
auto retLgr = backend_->fetchLedgerBySequence(seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfo));
auto retTxns = backend_->fetchAllTransactionsInLedger(seq, yield);
for (auto [hash, txn, meta] : txns) {
bool found = false;
for (auto [retTxn, retMeta, retSeq, retDate] : retTxns) {
if (std::strncmp(
reinterpret_cast<char const*>(retTxn.data()),
static_cast<char const*>(txn.data()),
txn.size()
) == 0 &&
std::strncmp(
reinterpret_cast<char const*>(retMeta.data()),
static_cast<char const*>(meta.data()),
meta.size()
) == 0)
found = true;
}
ASSERT_TRUE(found);
}
for (auto [account, data] : accountTx) {
std::vector<data::TransactionAndMetadata> retData;
std::optional<data::TransactionsCursor> cursor;
do {
uint32_t const limit = 10;
auto [accountTransactions, retCursor] =
backend_->fetchAccountTransactions(account, limit, false, cursor, yield);
if (retCursor)
EXPECT_EQ(accountTransactions.size(), limit);
retData.insert(retData.end(), accountTransactions.begin(), accountTransactions.end());
cursor = retCursor;
} while (cursor);
EXPECT_EQ(retData.size(), data.size());
for (size_t i = 0; i < retData.size(); ++i) {
auto [txn, meta, _, _2] = retData[i];
auto [_3, expTxn, expMeta] = data[i];
EXPECT_STREQ(reinterpret_cast<char const*>(txn.data()), static_cast<char const*>(expTxn.data()));
EXPECT_STREQ(reinterpret_cast<char const*>(meta.data()), static_cast<char const*>(expMeta.data()));
}
}
std::vector<ripple::uint256> keys;
for (auto [key, obj] : objs) {
auto retObj = backend_->fetchLedgerObject(binaryStringToUint256(key), seq, yield);
if (obj.size()) {
ASSERT_TRUE(retObj.has_value());
EXPECT_STREQ(static_cast<char const*>(obj.data()), reinterpret_cast<char const*>(retObj->data()));
} else {
ASSERT_FALSE(retObj.has_value());
}
keys.push_back(binaryStringToUint256(key));
}
{
auto retObjs = backend_->fetchLedgerObjects(keys, seq, yield);
ASSERT_EQ(retObjs.size(), objs.size());
for (size_t i = 0; i < keys.size(); ++i) {
auto [key, obj] = objs[i];
auto retObj = retObjs[i];
if (obj.size()) {
ASSERT_TRUE(retObj.size());
EXPECT_STREQ(
static_cast<char const*>(obj.data()), reinterpret_cast<char const*>(retObj.data())
);
} else {
ASSERT_FALSE(retObj.size());
}
}
}
data::LedgerPage page;
std::vector<data::LedgerObject> retObjs;
do {
uint32_t const limit = 10;
page = backend_->fetchLedgerPage(page.cursor, seq, limit, false, yield);
retObjs.insert(retObjs.end(), page.objects.begin(), page.objects.end());
} while (page.cursor);
for (auto const& obj : objs) {
bool found = false;
for (auto const& retObj : retObjs) {
if (ripple::strHex(obj.first) == ripple::strHex(retObj.key)) {
found = true;
ASSERT_EQ(ripple::strHex(obj.second), ripple::strHex(retObj.blob));
}
}
if (found != (obj.second.size() != 0))
ASSERT_EQ(found, obj.second.size() != 0);
}
};
std::map<uint32_t, std::vector<std::pair<std::string, std::string>>> state;
std::map<uint32_t, std::vector<std::tuple<std::string, std::string, std::string>>> allTxns;
std::unordered_map<std::string, std::pair<std::string, std::string>> allTxnsMap;
std::map<uint32_t, std::map<ripple::AccountID, std::vector<std::string>>> allAccountTx;
std::map<uint32_t, ripple::LedgerHeader> lgrInfos;
for (size_t i = 0; i < 10; ++i) {
lgrInfoNext = generateNextLedger(lgrInfoNext);
auto objs = generateObjects(25, lgrInfoNext.seq);
auto txns = generateTxns(10, lgrInfoNext.seq);
auto accountTx = generateAccountTx(lgrInfoNext.seq, txns);
for (auto rec : accountTx) {
for (auto account : rec.accounts) {
allAccountTx[lgrInfoNext.seq][account].emplace_back(
reinterpret_cast<char const*>(rec.txHash.data()), ripple::uint256::size()
);
}
}
EXPECT_EQ(objs.size(), 25);
EXPECT_NE(objs[0], objs[1]);
EXPECT_EQ(txns.size(), 10);
EXPECT_NE(txns[0], txns[1]);
std::ranges::sort(objs);
state[lgrInfoNext.seq] = objs;
writeLedger(lgrInfoNext, txns, objs, accountTx, state);
allTxns[lgrInfoNext.seq] = txns;
lgrInfos[lgrInfoNext.seq] = lgrInfoNext;
for (auto& [hash, txn, meta] : txns) {
allTxnsMap[hash] = std::make_pair(txn, meta);
}
}
std::vector<std::pair<std::string, std::string>> objs;
for (size_t i = 0; i < 10; ++i) {
lgrInfoNext = generateNextLedger(lgrInfoNext);
if (objs.empty()) {
objs = generateObjects(25, lgrInfoNext.seq);
} else {
objs = updateObjects(lgrInfoNext.seq, objs);
}
auto txns = generateTxns(10, lgrInfoNext.seq);
auto accountTx = generateAccountTx(lgrInfoNext.seq, txns);
for (auto rec : accountTx) {
for (auto account : rec.accounts) {
allAccountTx[lgrInfoNext.seq][account].emplace_back(
reinterpret_cast<char const*>(rec.txHash.data()), ripple::uint256::size()
);
}
}
EXPECT_EQ(objs.size(), 25);
EXPECT_NE(objs[0], objs[1]);
EXPECT_EQ(txns.size(), 10);
EXPECT_NE(txns[0], txns[1]);
std::ranges::sort(objs);
state[lgrInfoNext.seq] = objs;
writeLedger(lgrInfoNext, txns, objs, accountTx, state);
allTxns[lgrInfoNext.seq] = txns;
lgrInfos[lgrInfoNext.seq] = lgrInfoNext;
for (auto& [hash, txn, meta] : txns) {
allTxnsMap[hash] = std::make_pair(txn, meta);
}
}
auto flatten = [&](uint32_t max) {
std::vector<std::pair<std::string, std::string>> flat;
std::map<std::string, std::string> objs;
for (auto const& [seq, diff] : state) {
for (auto const& [k, v] : diff) {
if (seq > max) {
if (!objs.contains(k))
objs[k] = "";
} else {
objs[k] = v;
}
}
}
flat.reserve(objs.size());
for (auto const& [key, value] : objs) {
flat.emplace_back(key, value);
}
return flat;
};
auto flattenAccountTx = [&](uint32_t max) {
std::unordered_map<ripple::AccountID, std::vector<std::tuple<std::string, std::string, std::string>>>
accountTx;
for (auto const& [seq, map] : allAccountTx) {
if (seq > max)
break;
for (auto& [account, hashes] : map) {
for (auto& hash : hashes) {
auto& [txn, meta] = allTxnsMap[hash];
accountTx[account].emplace_back(hash, txn, meta);
}
}
}
for (auto& [account, data] : accountTx)
std::ranges::reverse(data);
return accountTx;
};
for (auto const& [seq, diff] : state) {
auto flat = flatten(seq);
checkLedger(lgrInfos[seq], allTxns[seq], flat, flattenAccountTx(seq));
}
done = true;
work.reset();
});
ctx_.run();
ASSERT_EQ(done, true);
}
TEST_F(BackendCassandraTest, CacheIntegration)
{
std::atomic_bool done = false;
std::optional<boost::asio::io_context::work> work;
work.emplace(ctx_);
boost::asio::spawn(ctx_, [this, &done, &work](boost::asio::yield_context yield) {
backend_->cache().setFull();
// this account is not related to the above transaction and
// metadata
std::string const accountHex =
"1100612200000000240480FDBC2503CE1A872D0000000555516931B2AD018EFFBE"
"17C5C9DCCF872F36837C2C6136ACF80F2A24079CF81FD0624000000005FF0E0781"
"142252F328CF91263417762570D67220CCB33B1370";
std::string const accountIndexHex = "E0311EB450B6177F969B94DBDDA83E99B7A0576ACD9079573876F16C0C004F06";
std::string rawHeaderBlob = hexStringToBinaryString(kRAWHEADER);
std::string accountBlob = hexStringToBinaryString(accountHex);
std::string const accountIndexBlob = hexStringToBinaryString(accountIndexHex);
ripple::LedgerHeader const lgrInfo = util::deserializeHeader(ripple::makeSlice(rawHeaderBlob));
backend_->startWrites();
backend_->writeLedger(lgrInfo, std::move(rawHeaderBlob));
backend_->writeSuccessor(uint256ToString(data::kFIRST_KEY), lgrInfo.seq, uint256ToString(data::kLAST_KEY));
ASSERT_TRUE(backend_->finishWrites(lgrInfo.seq));
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng.has_value());
EXPECT_EQ(rng->minSequence, rng->maxSequence);
EXPECT_EQ(rng->maxSequence, lgrInfo.seq);
}
{
auto seq = backend_->fetchLatestLedgerSequence(yield);
EXPECT_TRUE(seq.has_value());
EXPECT_EQ(*seq, lgrInfo.seq);
}
{
auto retLgr = backend_->fetchLedgerBySequence(lgrInfo.seq, yield);
ASSERT_TRUE(retLgr.has_value());
EXPECT_EQ(retLgr->seq, lgrInfo.seq);
EXPECT_EQ(ledgerHeaderToBlob(lgrInfo), ledgerHeaderToBlob(*retLgr));
}
EXPECT_FALSE(backend_->fetchLedgerBySequence(lgrInfo.seq + 1, yield).has_value());
auto lgrInfoOld = lgrInfo;
auto lgrInfoNext = lgrInfo;
lgrInfoNext.seq = lgrInfo.seq + 1;
lgrInfoNext.parentHash = lgrInfo.hash;
lgrInfoNext.hash++;
lgrInfoNext.accountHash = ~lgrInfo.accountHash;
{
std::string infoBlob = ledgerHeaderToBinaryString(lgrInfoNext);
backend_->startWrites();
backend_->writeLedger(lgrInfoNext, std::move(infoBlob));
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng.has_value());
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
}
{
auto seq = backend_->fetchLatestLedgerSequence(yield);
EXPECT_EQ(seq, lgrInfoNext.seq);
}
{
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr.has_value());
EXPECT_EQ(retLgr->seq, lgrInfoNext.seq);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
EXPECT_NE(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoOld));
retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq - 1, yield);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoOld));
EXPECT_NE(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq - 2, yield);
EXPECT_FALSE(backend_->fetchLedgerBySequence(lgrInfoNext.seq - 2, yield).has_value());
auto txns = backend_->fetchAllTransactionsInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(txns.size(), 0);
auto hashes = backend_->fetchAllTransactionHashesInLedger(lgrInfoNext.seq, yield);
EXPECT_EQ(hashes.size(), 0);
}
{
backend_->startWrites();
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.txHash = ~lgrInfo.txHash;
lgrInfoNext.accountHash = lgrInfoNext.accountHash ^ lgrInfoNext.txHash;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{accountBlob});
auto key = ripple::uint256::fromVoidChecked(accountIndexBlob);
backend_->cache().update(
{{.key = *key, .blob = {accountBlob.begin(), accountBlob.end()}}}, lgrInfoNext.seq
);
backend_->writeSuccessor(uint256ToString(data::kFIRST_KEY), lgrInfoNext.seq, std::string{accountIndexBlob});
backend_->writeSuccessor(std::string{accountIndexBlob}, lgrInfoNext.seq, uint256ToString(data::kLAST_KEY));
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfoNext));
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
std::string accountBlobOld = accountBlob;
{
backend_->startWrites();
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
lgrInfoNext.txHash = lgrInfoNext.txHash ^ lgrInfoNext.accountHash;
lgrInfoNext.accountHash = ~(lgrInfoNext.accountHash ^ lgrInfoNext.txHash);
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
std::shuffle(accountBlob.begin(), accountBlob.end(), randomEngine_);
auto key = ripple::uint256::fromVoidChecked(accountIndexBlob);
backend_->cache().update(
{{.key = *key, .blob = {accountBlob.begin(), accountBlob.end()}}}, lgrInfoNext.seq
);
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{accountBlob});
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlob.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq - 1, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlobOld.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
{
backend_->startWrites();
lgrInfoNext.seq = lgrInfoNext.seq + 1;
lgrInfoNext.parentHash = lgrInfoNext.hash;
lgrInfoNext.hash++;
lgrInfoNext.txHash = lgrInfoNext.txHash ^ lgrInfoNext.accountHash;
lgrInfoNext.accountHash = ~(lgrInfoNext.accountHash ^ lgrInfoNext.txHash);
backend_->writeLedger(lgrInfoNext, ledgerHeaderToBinaryString(lgrInfoNext));
auto key = ripple::uint256::fromVoidChecked(accountIndexBlob);
backend_->cache().update({{.key = *key, .blob = {}}}, lgrInfoNext.seq);
backend_->writeLedgerObject(std::string{accountIndexBlob}, lgrInfoNext.seq, std::string{});
backend_->writeSuccessor(
uint256ToString(data::kFIRST_KEY), lgrInfoNext.seq, uint256ToString(data::kLAST_KEY)
);
ASSERT_TRUE(backend_->finishWrites(lgrInfoNext.seq));
}
{
auto rng = backend_->fetchLedgerRange();
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_EQ(rng->maxSequence, lgrInfoNext.seq);
auto retLgr = backend_->fetchLedgerBySequence(lgrInfoNext.seq, yield);
EXPECT_TRUE(retLgr);
ripple::uint256 key256;
EXPECT_TRUE(key256.parseHex(accountIndexHex));
auto obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq, yield);
EXPECT_FALSE(obj);
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq + 1, yield);
EXPECT_FALSE(obj);
obj = backend_->fetchLedgerObject(key256, lgrInfoNext.seq - 2, yield);
EXPECT_TRUE(obj);
EXPECT_STREQ(reinterpret_cast<char const*>(obj->data()), static_cast<char const*>(accountBlobOld.data()));
obj = backend_->fetchLedgerObject(key256, lgrInfoOld.seq - 1, yield);
EXPECT_FALSE(obj);
}
auto generateObjects = [](size_t numObjects, uint64_t ledgerSequence) {
std::vector<std::pair<std::string, std::string>> res{numObjects};
ripple::uint256 key;
key = ledgerSequence * 100000;
for (auto& blob : res) {
++key;
std::string const keyStr{reinterpret_cast<char const*>(key.data()), ripple::uint256::size()};
blob.first = keyStr;
blob.second = std::to_string(ledgerSequence) + keyStr;
}
return res;
};
auto updateObjects = [](uint32_t ledgerSequence, auto objs) {
for (auto& [key, obj] : objs) {
obj = std::to_string(ledgerSequence) + obj;
}
return objs;
};
auto generateNextLedger = [this](auto lgrInfo) {
++lgrInfo.seq;
lgrInfo.parentHash = lgrInfo.hash;
std::shuffle(lgrInfo.txHash.begin(), lgrInfo.txHash.end(), randomEngine_);
std::shuffle(lgrInfo.accountHash.begin(), lgrInfo.accountHash.end(), randomEngine_);
std::shuffle(lgrInfo.hash.begin(), lgrInfo.hash.end(), randomEngine_);
return lgrInfo;
};
auto writeLedger = [&](auto lgrInfo, auto objs, auto state) {
backend_->startWrites();
backend_->writeLedger(lgrInfo, std::move(ledgerHeaderToBinaryString(lgrInfo)));
std::vector<data::LedgerObject> cacheUpdates;
for (auto [key, obj] : objs) {
backend_->writeLedgerObject(std::string{key}, lgrInfo.seq, std::string{obj});
auto key256 = ripple::uint256::fromVoidChecked(key);
cacheUpdates.push_back({*key256, {obj.begin(), obj.end()}});
}
backend_->cache().update(cacheUpdates, lgrInfo.seq);
if (state.count(lgrInfo.seq - 1) == 0 ||
std::find_if(state[lgrInfo.seq - 1].begin(), state[lgrInfo.seq - 1].end(), [&](auto obj) {
return obj.first == objs[0].first;
}) == state[lgrInfo.seq - 1].end()) {
for (size_t i = 0; i < objs.size(); ++i) {
if (i + 1 < objs.size()) {
backend_->writeSuccessor(
std::string{objs[i].first}, lgrInfo.seq, std::string{objs[i + 1].first}
);
} else {
backend_->writeSuccessor(
std::string{objs[i].first}, lgrInfo.seq, uint256ToString(data::kLAST_KEY)
);
}
}
if (state.contains(lgrInfo.seq - 1)) {
backend_->writeSuccessor(
std::string{state[lgrInfo.seq - 1].back().first}, lgrInfo.seq, std::string{objs[0].first}
);
} else {
backend_->writeSuccessor(
uint256ToString(data::kFIRST_KEY), lgrInfo.seq, std::string{objs[0].first}
);
}
}
ASSERT_TRUE(backend_->finishWrites(lgrInfo.seq));
};
auto checkLedger = [&](auto lgrInfo, auto objs) {
auto rng = backend_->fetchLedgerRange();
auto seq = lgrInfo.seq;
EXPECT_TRUE(rng);
EXPECT_EQ(rng->minSequence, lgrInfoOld.seq);
EXPECT_GE(rng->maxSequence, seq);
auto retLgr = backend_->fetchLedgerBySequence(seq, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfo));
retLgr = backend_->fetchLedgerByHash(lgrInfo.hash, yield);
EXPECT_TRUE(retLgr);
EXPECT_EQ(ledgerHeaderToBlob(*retLgr), ledgerHeaderToBlob(lgrInfo))
<< "retLgr seq:" << retLgr->seq << "; lgrInfo seq:" << lgrInfo.seq << "; retLgr hash:" << retLgr->hash
<< "; lgrInfo hash:" << lgrInfo.hash << "; retLgr parentHash:" << retLgr->parentHash
<< "; lgr Info parentHash:" << lgrInfo.parentHash;
std::vector<ripple::uint256> keys;
for (auto [key, obj] : objs) {
auto retObj = backend_->fetchLedgerObject(binaryStringToUint256(key), seq, yield);
if (obj.size()) {
ASSERT_TRUE(retObj.has_value());
EXPECT_STREQ(static_cast<char const*>(obj.data()), reinterpret_cast<char const*>(retObj->data()));
} else {
ASSERT_FALSE(retObj.has_value());
}
keys.push_back(binaryStringToUint256(key));
}
{
auto retObjs = backend_->fetchLedgerObjects(keys, seq, yield);
ASSERT_EQ(retObjs.size(), objs.size());
for (size_t i = 0; i < keys.size(); ++i) {
auto [key, obj] = objs[i];
auto retObj = retObjs[i];
if (obj.size()) {
ASSERT_TRUE(retObj.size());
EXPECT_STREQ(
static_cast<char const*>(obj.data()), reinterpret_cast<char const*>(retObj.data())
);
} else {
ASSERT_FALSE(retObj.size());
}
}
}
data::LedgerPage page;
std::vector<data::LedgerObject> retObjs;
do {
uint32_t const limit = 10;
page = backend_->fetchLedgerPage(page.cursor, seq, limit, false, yield);
retObjs.insert(retObjs.end(), page.objects.begin(), page.objects.end());
} while (page.cursor);
for (auto const& obj : objs) {
bool found = false;
for (auto const& retObj : retObjs) {
if (ripple::strHex(obj.first) == ripple::strHex(retObj.key)) {
found = true;
ASSERT_EQ(ripple::strHex(obj.second), ripple::strHex(retObj.blob));
}
}
if (found != (obj.second.size() != 0))
ASSERT_EQ(found, obj.second.size() != 0);
}
};
std::map<uint32_t, std::vector<std::pair<std::string, std::string>>> state;
std::map<uint32_t, ripple::LedgerHeader> lgrInfos;
for (size_t i = 0; i < 10; ++i) {
lgrInfoNext = generateNextLedger(lgrInfoNext);
auto objs = generateObjects(25, lgrInfoNext.seq);
EXPECT_EQ(objs.size(), 25);
EXPECT_NE(objs[0], objs[1]);
std::ranges::sort(objs);
state[lgrInfoNext.seq] = objs;
writeLedger(lgrInfoNext, objs, state);
lgrInfos[lgrInfoNext.seq] = lgrInfoNext;
}
std::vector<std::pair<std::string, std::string>> objs;
for (size_t i = 0; i < 10; ++i) {
lgrInfoNext = generateNextLedger(lgrInfoNext);
if (objs.empty()) {
objs = generateObjects(25, lgrInfoNext.seq);
} else {
objs = updateObjects(lgrInfoNext.seq, objs);
}
EXPECT_EQ(objs.size(), 25);
EXPECT_NE(objs[0], objs[1]);
std::ranges::sort(objs);
state[lgrInfoNext.seq] = objs;
writeLedger(lgrInfoNext, objs, state);
lgrInfos[lgrInfoNext.seq] = lgrInfoNext;
}
auto flatten = [&](uint32_t max) {
std::vector<std::pair<std::string, std::string>> flat;
std::map<std::string, std::string> objs;
for (auto const& [seq, diff] : state) {
for (auto const& [k, v] : diff) {
if (seq > max) {
if (!objs.contains(k))
objs[k] = "";
} else {
objs[k] = v;
}
}
}
flat.reserve(objs.size());
for (auto const& [key, value] : objs) {
flat.emplace_back(key, value);
}
return flat;
};
for (auto const& [seq, diff] : state) {
auto flat = flatten(seq);
checkLedger(lgrInfos[seq], flat);
}
done = true;
work.reset();
});
ctx_.run();
ASSERT_EQ(done, true);
}
class CacheBackendCassandraTest : public BackendCassandraTestBase {
protected:
using TestBackendType = data::cassandra::BasicCassandraBackend<
SettingsProvider,
data::cassandra::impl::DefaultExecutionStrategy<>,
MockLedgerHeaderCache>;
std::unique_ptr<BackendInterface> backend_{std::make_unique<TestBackendType>(settingsProvider_, cache_, false)};
public:
MockLedgerHeaderCache&
getMockCache()
{
return dynamic_cast<TestBackendType&>(*backend_).ledgerCache_;
}
};
TEST_F(CacheBackendCassandraTest, CacheFetchLedgerBySeq)
{
runSpawn([&](boost::asio::yield_context yield) {
auto rawHeaderBlob = hexStringToBinaryString(kRAWHEADER);
ripple::LedgerHeader const lgrInfo = util::deserializeHeader(ripple::makeSlice(rawHeaderBlob));
backend_->writeLedger(lgrInfo, std::move(rawHeaderBlob));
auto const testLedgerSeq = lgrInfo.seq;
ASSERT_TRUE(backend_->finishWrites(lgrInfo.seq));
EXPECT_CALL(getMockCache(), put(data::FetchLedgerCache::CacheEntry{lgrInfo, testLedgerSeq}));
{
testing::InSequence const s;
// first time, getSeq doesn't match ledger sequence
EXPECT_CALL(getMockCache(), get()).WillOnce(testing::Return(std::nullopt));
// second time, it would be cached
EXPECT_CALL(getMockCache(), get())
.WillOnce(testing::Return(data::FetchLedgerCache::CacheEntry{.ledger = lgrInfo, .seq = testLedgerSeq}));
}
{
// backend should cache the result of fetchLedgerBySequence
auto const ledger = backend_->fetchLedgerBySequence(testLedgerSeq, yield);
ASSERT_TRUE(ledger.has_value());
EXPECT_EQ(ledger->seq, lgrInfo.seq);
}
{
// Second call: should return from cache
auto const ledger = backend_->fetchLedgerBySequence(testLedgerSeq, yield);
ASSERT_TRUE(ledger.has_value());
EXPECT_EQ(ledger->seq, lgrInfo.seq);
}
});
}
struct BackendCassandraNodeMessageTest : BackendCassandraTest {
boost::uuids::random_generator generateUuid{};
};
TEST_F(BackendCassandraNodeMessageTest, UpdateFetch)
{
static boost::uuids::uuid const kUUID = generateUuid();
static std::string const kMESSAGE = "some message";
EXPECT_NO_THROW({ backend_->writeNodeMessage(kUUID, kMESSAGE); });
runSpawn([&](boost::asio::yield_context yield) {
auto const readResult = backend_->fetchClioNodesData(yield);
ASSERT_TRUE(readResult) << readResult.error();
ASSERT_EQ(readResult->size(), 1);
auto const& [uuid, message] = (*readResult)[0];
EXPECT_EQ(uuid, kUUID);
EXPECT_EQ(message, kMESSAGE);
});
}
TEST_F(BackendCassandraNodeMessageTest, UpdateFetchMultipleMessages)
{
std::unordered_map<boost::uuids::uuid, std::string> kDATA = {
{generateUuid(), std::string{"some message"}},
{generateUuid(), std::string{"other message"}},
{generateUuid(), std::string{"message 3"}}
};
EXPECT_NO_THROW({
for (auto const& [uuid, message] : kDATA) {
backend_->writeNodeMessage(uuid, message);
}
});
runSpawn([&](boost::asio::yield_context yield) {
auto const readResult = backend_->fetchClioNodesData(yield);
ASSERT_TRUE(readResult) << readResult.error();
ASSERT_EQ(readResult->size(), kDATA.size());
for (size_t i = 0; i < readResult->size(); ++i) {
auto const& [uuid, message] = (*readResult)[i];
auto const it = kDATA.find(uuid);
ASSERT_NE(it, kDATA.end()) << uuid << " not found";
EXPECT_EQ(it->second, message);
}
});
}
TEST_F(BackendCassandraNodeMessageTest, MessageDisappearsAfterTTL)
{
EXPECT_NO_THROW({ backend_->writeNodeMessage(generateUuid(), "some message"); });
std::this_thread::sleep_for(std::chrono::milliseconds{2005});
runSpawn([&](boost::asio::yield_context yield) {
auto const readResult = backend_->fetchClioNodesData(yield);
ASSERT_TRUE(readResult) << readResult.error();
EXPECT_TRUE(readResult->empty());
});
}
TEST_F(BackendCassandraNodeMessageTest, UpdatingMessageKeepsItAlive)
{
#if defined(__APPLE__)
GTEST_SKIP() << "Skipping test on Apple platform due to slow DB";
#else
static boost::uuids::uuid const kUUID = generateUuid();
static std::string const kUPDATED_MESSAGE = "updated message";
EXPECT_NO_THROW({ backend_->writeNodeMessage(kUUID, "some message"); });
std::this_thread::sleep_for(std::chrono::milliseconds{1000});
EXPECT_NO_THROW({ backend_->writeNodeMessage(kUUID, kUPDATED_MESSAGE); });
std::this_thread::sleep_for(std::chrono::milliseconds{1005});
runSpawn([&](boost::asio::yield_context yield) {
auto const readResult = backend_->fetchClioNodesData(yield);
ASSERT_TRUE(readResult) << readResult.error();
ASSERT_EQ(readResult->size(), 1);
auto const& [uuid, message] = (*readResult)[0];
EXPECT_EQ(uuid, kUUID);
EXPECT_EQ(message, kUPDATED_MESSAGE);
});
#endif
}